The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

Overview

README

The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

Introduction

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., deep learning) domain.

image-20210528201234901

Requirements

See requirements.txt

To install torch_geometric, please follow the instruction on pytorch_geometric

Reproduction

To reproduce the results in the paper (using word2vec embeddings)

Download data from Google Drive, unzip and put all the folders in the root directory of this repo (details about data are described below)

For broad domains (e.g., CS)

python run.py --domain cs --method cfl

For narrow domains (e.g., ML)

python run.py --domain cs --method hicfl --narrow

For narrow domains (PU setting) (e.g., ML)

python run.py --domain cs --method hicfl --narrow --pu

All experiments are run on an NVIDIA Quadro RTX 5000 with 16GB of memory under the PyTorch framework. The training of CFL for the CS domain can finish in 1 minute.

Query

To handle user query (using compositional GloVe embeddings as an example)

Download data from Google Drive, unzip and put all the folders in the root directory of this repo

Download GloVe embeddings from https://nlp.stanford.edu/projects/glove/, save the file to features/glove.6B.100d.txt

Example:

python query.py --domain cs --method cfl

The first run will train a model and save the model to model/. For the follow-up queries, the trained model can be loaded for prediction.

You can use the model either in a transductive or in an inductive setting (i.e., whether to include the query terms in training).

Options

You can check out the other options available using:

python run.py --help

Data

Data can be downloaded from Google Drive:

term-candidates/: list of seed terms. Format: term frequency

features/: features of terms (term embeddings trained by word2vec). To use compositional GloVe embeddings as features, you can download GloVe embeddings from https://nlp.stanford.edu/projects/glove/. To load the features, refer to utils.py for more details.

wikipedia/: Wikipedia search results for constructing the core-anchored semantic graph / automatic annotation

  • core-categories/: categories of core terms collected from Wikipedia. Format: term catogory ... category

  • gold-subcategories/: gold-subcategories for each domain collected from Wikipedia. Format: level#Category

  • ranking-results/: Wikipedia search results. 0 means using exact match, 1 means without exact match. Format: term result_1 ... result_k.

    The results are collected by the following script:

    # https://pypi.org/project/wikipedia/
    import wikipedia
    def get_wiki_search_result(term, mode=0):
        if mode==0:
            return wikipedia.search(f"\"{term}\"")
        else:
            return wikipedia.search(term)

train-valid-test/: train/valid/test split for evaluation with core terms

manual-data/:

  • ml2000-test.csv: manually created test set for ML
  • domain-relevance-comparison-pairs.csv: manually created test set for domain relevance comparison

Term lists

Several term lists with domain relevance scores produced by CFL/HiCFL are available on term-lists/

Format:

term  domain relevance score  core/fringe

Sample results for Machine Learning:

image-20210528201345177

Citation

The details of this repo are described in the following paper. If you find this repo useful, please kindly cite it:

@inproceedings{huang2021measuring,
  title={Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach},
  author={Huang, Jie and Chang, Kevin Chen-Chuan and Xiong, Jinjun and Hwu, Wen-mei},
  booktitle={Proceedings of ACL-IJCNLP},
  year={2021}
}
Owner
Jie Huang
Jie Huang
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022