Behavioral "black-box" testing for recommender systems

Overview

RecList

Documentation Status Contributors License Downloads

RecList

Overview

RecList is an open source library providing behavioral, "black-box" testing for recommender systems. Inspired by the pioneering work of Ribeiro et al. 2020 in NLP, we introduce a general plug-and-play procedure to scale up behavioral testing, with an easy-to-extend interface for custom use cases.

RecList ships with some popular datasets and ready-made behavioral tests: check the paper for more details on the relevant literature and the philosophical motivations behind the project.

If you are not familiar with the library, we suggest first taking our small tour to get acquainted with the main abstractions through ready-made models and public datasets.

Quick Links

  • Our paper, with in-depth analysis, detailed use cases and scholarly references.
  • A colab notebook (WIP), showing how to train a cart recommender model from scratch and use the library to test it.
  • Our blog post (forthcoming), with examples and practical tips.

Project updates

Nov. 2021: the library is currently in alpha (i.e. enough working code to finish the paper and tinker with it). We welcome early feedback, but please be advised that the package may change substantially in the upcoming months ("If you're not embarrassed by the first version, you've launched too late").

As the project is in active development, come back often for updates.

Summary

This doc is structured as follows:

Quick Start

If you want to see RecList in action, clone the repository, create and activate a virtual env, and install the required packages from root. If you prefer to experiment in an interactive, no-installation-required fashion, try out our colab notebook.

Sample scripts are divided by use-cases: similar items, complementary items or session-based recommendations. When executing one, a suitable public dataset will be downloaded, and a baseline ML model trained: finally, the script will run a pre-made suite of behavioral tests to show typical results.

git clone https://github.com/jacopotagliabue/reclist
cd reclist
python3 -m venv venv
source venv/bin/activate
pip install -e .
python examples/coveo_complementary_rec.py

Running your model on one of the supported dataset, leveraging the pre-made tests, is as easy as implementing a simple interface, RecModel.

Once you've run successfully the sample script, take the guided tour below to learn more about the abstractions and the out-of-the-box capabilities of RecList.

A Guided Tour

An instance of RecList represents a suite of tests for recommender systems: given a dataset (more appropriately, an instance of RecDataset) and a model (an instance of RecModel), it will run the specified tests on the target dataset, using the supplied model.

For example, the following code instantiates a pre-made suite of tests that contains sensible defaults for a cart recommendation use case:

rec_list = CoveoCartRecList(
    model=model,
    dataset=coveo_dataset
)
# invoke rec_list to run tests
rec_list(verbose=True)

Our library pre-packages standard recSys KPIs and important behavioral tests, divided by use cases, but it is built with extensibility in mind: you can re-use tests in new suites, or you can write new domain-specific suites and tests.

Any suite must inherit the RecList interface, and then declare with Pytonic decorators its tests: in this case, the test re-uses a standard function:

class MyRecList(RecList):

    @rec_test(test_type='stats')
    def basic_stats(self):
        """
        Basic statistics on training, test and prediction data
        """
        from reclist.metrics.standard_metrics import statistics
        return statistics(self._x_train,
            self._y_train,
            self._x_test,
            self._y_test,
            self._y_preds)

Any model can be tested, as long as its predictions are wrapped in a RecModel. This allows for pure "black-box" testings, a SaaS provider can be tested just by wrapping the proper API call in the method:

class MyCartModel(RecModel):

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    def predict(self, prediction_input: list, *args, **kwargs):
        """
        Implement the abstract method, accepting a list of lists, each list being
        the content of a cart: the predictions returned by the model are the top K
        items suggested to complete the cart.
        """

        return

While many standard KPIs are available in the package, the philosophy behind RecList is that metrics like Hit Rate provide only a partial picture of the expected behavior of recommenders in the wild: two models with very similar accuracy can have very different behavior on, say, the long-tail, or model A can be better than model B overall, but at the expense of providing disastrous performance on a set of inputs that are particularly important in production.

RecList recognizes that outside of academic benchmarks, some mistakes are worse than others, and not all inputs are created equal: when possible, it tries to operationalize through scalable code behavioral insights for debugging and error analysis; it also provides extensible abstractions when domain knowledge and custom logic are needed.

Once you run a suite of tests, results are dumped automatically and versioned in a local folder, structured as follows (name of the suite, name of the model, run timestamp):

.reclist/
  myList/
    myModel/
      1637357392/
      1637357404/

We provide a simple (and very WIP) UI to easily compare runs and models. After you run two times one of the example scripts, you can do:

cd app
python app.py

to start a local web app that lets you explore test results:

https://github.com/jacopotagliabue/reclist/blob/main/images/explorer.png

If you select more than model, the app will automatically build comparison tables:

https://github.com/jacopotagliabue/reclist/blob/main/images/comparison.png

If you start using RecList as part of your standard testings - either for research or production purposes - you can use the JSON report for machine-to-machine communication with downstream system (e.g. you may want to automatically fail the model pipeline if certain behavioral tests are not passed).

Capabilities

RecList provides a dataset and model agnostic framework to scale up behavioral tests. As long as the proper abstractions are implemented, all the out-of-the-box components can be re-used. For example:

  • you can use a public dataset provided by RecList to train your new cart recommender model, and then use the RecTests we provide for that use case;
  • you can use some baseline model on your custom dataset, to establish a baseline for your project;
  • you can use a custom model, on a private dataset and define from scratch a new suite of tests, mixing existing methods and domain-specific tests.

We list below what we currently support out-of-the-box, with particular focus on datasets and tests, as the models we provide are convenient baselines, but they are not meant to be SOTA research models.

Datasets

RecList features convenient wrappers around popular datasets, to help test models over known benchmarks in a standardized way.

Behavioral Tests

Coming soon!

Roadmap

To do:

  • the app is just a stub: improve the report "contract" and extend the app capabilities, possibly including it in the library itself;
  • continue adding default RecTests by use cases, and test them on public datasets;
  • improving our test suites and refactor some abstractions;
  • adding Colab tutorials, extensive documentation and a blog-like write-up to explain the basic usage.

We maintain a small Trello board on the project which we plan on sharing with the community: more details coming soon!

Contributing

We will update this repo with some guidelines for contributions as soon as the codebase becomes more stable. Check back often for updates!

Acknowledgments

The main contributors are:

If you have questions or feedback, please reach out to: jacopo dot tagliabue at tooso dot ai.

License and Citation

All the code is released under an open MIT license. If you found RecList useful, or you are using it to benchmark/debug your model, please cite our pre-print (forhtcoming):

@inproceedings{Chia2021BeyondNB,
  title={Beyond NDCG: behavioral testing of recommender systems with RecList},
  author={Patrick John Chia and Jacopo Tagliabue and Federico Bianchi and Chloe He and Brian Ko},
  year={2021}
}

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

Owner
Jacopo Tagliabue
I failed the Turing Test once, but that was many friends ago.
Jacopo Tagliabue
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
Object Detection with YOLOv3

Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b

Ayşe Konuş 0 Mar 27, 2022
🤖 Project template for your next awesome AI project. 🦾

🤖 AI Awesome Project Template 👋 Template author You may want to adjust badge links in a README.md file. 💎 Installation with pip Installation is as

Wiktor Łazarski 18 Nov 23, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view.

CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view. Center-based 3D Object Detection and Tracking, Tianwei Yin, Xin

Tianwei Yin 134 Dec 23, 2022
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Alex Pashevich 62 Dec 24, 2022
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images Histological Image Segmentation This

Saad Wazir 11 Dec 16, 2022