Behavioral "black-box" testing for recommender systems

Overview

RecList

Documentation Status Contributors License Downloads

RecList

Overview

RecList is an open source library providing behavioral, "black-box" testing for recommender systems. Inspired by the pioneering work of Ribeiro et al. 2020 in NLP, we introduce a general plug-and-play procedure to scale up behavioral testing, with an easy-to-extend interface for custom use cases.

RecList ships with some popular datasets and ready-made behavioral tests: check the paper for more details on the relevant literature and the philosophical motivations behind the project.

If you are not familiar with the library, we suggest first taking our small tour to get acquainted with the main abstractions through ready-made models and public datasets.

Quick Links

  • Our paper, with in-depth analysis, detailed use cases and scholarly references.
  • A colab notebook (WIP), showing how to train a cart recommender model from scratch and use the library to test it.
  • Our blog post (forthcoming), with examples and practical tips.

Project updates

Nov. 2021: the library is currently in alpha (i.e. enough working code to finish the paper and tinker with it). We welcome early feedback, but please be advised that the package may change substantially in the upcoming months ("If you're not embarrassed by the first version, you've launched too late").

As the project is in active development, come back often for updates.

Summary

This doc is structured as follows:

Quick Start

If you want to see RecList in action, clone the repository, create and activate a virtual env, and install the required packages from root. If you prefer to experiment in an interactive, no-installation-required fashion, try out our colab notebook.

Sample scripts are divided by use-cases: similar items, complementary items or session-based recommendations. When executing one, a suitable public dataset will be downloaded, and a baseline ML model trained: finally, the script will run a pre-made suite of behavioral tests to show typical results.

git clone https://github.com/jacopotagliabue/reclist
cd reclist
python3 -m venv venv
source venv/bin/activate
pip install -e .
python examples/coveo_complementary_rec.py

Running your model on one of the supported dataset, leveraging the pre-made tests, is as easy as implementing a simple interface, RecModel.

Once you've run successfully the sample script, take the guided tour below to learn more about the abstractions and the out-of-the-box capabilities of RecList.

A Guided Tour

An instance of RecList represents a suite of tests for recommender systems: given a dataset (more appropriately, an instance of RecDataset) and a model (an instance of RecModel), it will run the specified tests on the target dataset, using the supplied model.

For example, the following code instantiates a pre-made suite of tests that contains sensible defaults for a cart recommendation use case:

rec_list = CoveoCartRecList(
    model=model,
    dataset=coveo_dataset
)
# invoke rec_list to run tests
rec_list(verbose=True)

Our library pre-packages standard recSys KPIs and important behavioral tests, divided by use cases, but it is built with extensibility in mind: you can re-use tests in new suites, or you can write new domain-specific suites and tests.

Any suite must inherit the RecList interface, and then declare with Pytonic decorators its tests: in this case, the test re-uses a standard function:

class MyRecList(RecList):

    @rec_test(test_type='stats')
    def basic_stats(self):
        """
        Basic statistics on training, test and prediction data
        """
        from reclist.metrics.standard_metrics import statistics
        return statistics(self._x_train,
            self._y_train,
            self._x_test,
            self._y_test,
            self._y_preds)

Any model can be tested, as long as its predictions are wrapped in a RecModel. This allows for pure "black-box" testings, a SaaS provider can be tested just by wrapping the proper API call in the method:

class MyCartModel(RecModel):

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    def predict(self, prediction_input: list, *args, **kwargs):
        """
        Implement the abstract method, accepting a list of lists, each list being
        the content of a cart: the predictions returned by the model are the top K
        items suggested to complete the cart.
        """

        return

While many standard KPIs are available in the package, the philosophy behind RecList is that metrics like Hit Rate provide only a partial picture of the expected behavior of recommenders in the wild: two models with very similar accuracy can have very different behavior on, say, the long-tail, or model A can be better than model B overall, but at the expense of providing disastrous performance on a set of inputs that are particularly important in production.

RecList recognizes that outside of academic benchmarks, some mistakes are worse than others, and not all inputs are created equal: when possible, it tries to operationalize through scalable code behavioral insights for debugging and error analysis; it also provides extensible abstractions when domain knowledge and custom logic are needed.

Once you run a suite of tests, results are dumped automatically and versioned in a local folder, structured as follows (name of the suite, name of the model, run timestamp):

.reclist/
  myList/
    myModel/
      1637357392/
      1637357404/

We provide a simple (and very WIP) UI to easily compare runs and models. After you run two times one of the example scripts, you can do:

cd app
python app.py

to start a local web app that lets you explore test results:

https://github.com/jacopotagliabue/reclist/blob/main/images/explorer.png

If you select more than model, the app will automatically build comparison tables:

https://github.com/jacopotagliabue/reclist/blob/main/images/comparison.png

If you start using RecList as part of your standard testings - either for research or production purposes - you can use the JSON report for machine-to-machine communication with downstream system (e.g. you may want to automatically fail the model pipeline if certain behavioral tests are not passed).

Capabilities

RecList provides a dataset and model agnostic framework to scale up behavioral tests. As long as the proper abstractions are implemented, all the out-of-the-box components can be re-used. For example:

  • you can use a public dataset provided by RecList to train your new cart recommender model, and then use the RecTests we provide for that use case;
  • you can use some baseline model on your custom dataset, to establish a baseline for your project;
  • you can use a custom model, on a private dataset and define from scratch a new suite of tests, mixing existing methods and domain-specific tests.

We list below what we currently support out-of-the-box, with particular focus on datasets and tests, as the models we provide are convenient baselines, but they are not meant to be SOTA research models.

Datasets

RecList features convenient wrappers around popular datasets, to help test models over known benchmarks in a standardized way.

Behavioral Tests

Coming soon!

Roadmap

To do:

  • the app is just a stub: improve the report "contract" and extend the app capabilities, possibly including it in the library itself;
  • continue adding default RecTests by use cases, and test them on public datasets;
  • improving our test suites and refactor some abstractions;
  • adding Colab tutorials, extensive documentation and a blog-like write-up to explain the basic usage.

We maintain a small Trello board on the project which we plan on sharing with the community: more details coming soon!

Contributing

We will update this repo with some guidelines for contributions as soon as the codebase becomes more stable. Check back often for updates!

Acknowledgments

The main contributors are:

If you have questions or feedback, please reach out to: jacopo dot tagliabue at tooso dot ai.

License and Citation

All the code is released under an open MIT license. If you found RecList useful, or you are using it to benchmark/debug your model, please cite our pre-print (forhtcoming):

@inproceedings{Chia2021BeyondNB,
  title={Beyond NDCG: behavioral testing of recommender systems with RecList},
  author={Patrick John Chia and Jacopo Tagliabue and Federico Bianchi and Chloe He and Brian Ko},
  year={2021}
}

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

Owner
Jacopo Tagliabue
I failed the Turing Test once, but that was many friends ago.
Jacopo Tagliabue
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
Multiple paper open-source codes of the Microsoft Research Asia DKI group

๐Ÿ“ซ Paper Code Collection (MSRA DKI Group) This repo hosts multiple open-source codes of the Microsoft Research Asia DKI Group. You could find the corr

Microsoft 249 Jan 08, 2023
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

17 Oct 30, 2022
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
Automatic 2D-to-3D Video Conversion with CNNs

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs How To Run To run this code. Please install MXNet following the official document. Deep3D requir

Eric Junyuan Xie 1.2k Dec 30, 2022
Convert dog pictures into various painting styles. Try LimnPet

LimnPet Cartoon stylization service project Try our service ยป Home page ยท Team notion ยท Members ๋ชฉ์ฐจ ํ”„๋กœ์ ํŠธ ์†Œ๊ฐœ ํ”„๋กœ์ ํŠธ ๋ชฉํ‘œ ์‚ฌ์šฉํ•œ ๊ธฐ์ˆ ์Šคํƒ๊ณผ ์ˆ˜ํ–‰๋„๊ตฌ ํŒ€์› ๊ตฌํ˜„ ๊ธฐ๋Šฅ ์ฃผ์š” ๊ธฐ๋Šฅ ์ถ”๊ฐ€ ๊ธฐ๋Šฅ

LiJell 7 Jul 14, 2022
Explaining neural decisions contrastively to alternative decisions.

Contrastive Explanations for Model Interpretability This is the repository for the paper "Contrastive Explanations for Model Interpretability", about

AI2 16 Oct 16, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

Petros Christodoulou 4.7k Jan 04, 2023
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Pan Lu 81 Dec 27, 2022
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
MIMIC Code Repository: Code shared by the research community for the MIMIC-III database

MIMIC Code Repository The MIMIC Code Repository is intended to be a central hub for sharing, refining, and reusing code used for analysis of the MIMIC

MIT Laboratory for Computational Physiology 1.8k Dec 26, 2022
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022