Internship Assessment Task for BaggageAI.

Overview

BaggageAI Internship Task

Problem Statement:

  • You are given two sets of images:- background and threat objects. Background images are the background x-ray images of baggage that gets generated after passing through a X-ray machine at airport. Threat images are the x-ray images of threats that are prohibited at airport while travelling.

  • Your task is to cut the threat objects, scale it down, rotate with 45 degree and paste it into the background images using image processing techniques in python.

  • Threat objects should be translucent, means it should not look like that it is cut pasted. It should look like that the threat was already there in the background images. Translucent means the threat objects should have shades of background where it is pasted.

  • Threat should not go outside the boundary of the baggage. ** difficult **

  • If there is any background of threat objects, then it should not be cut pasted into the background images, which means while cutting the threat objects, the boundary of a threat object should be tight-bound.

Solution:

Libraries Used :

  • OpenCV
  • numpy
  • glob
  • os
  • matplotlib
  • itertools

Methodology

To start with, we read the threat images, background images using the read_images function. For each threat image, it is first converted to grayscale and then dilated with 5x5 matrix of ones with iteration 2. Thi sis done to smooth out the image since the bright area around the threat image gets dilated around the background. Next, we create a mask for the threat object using a threshold value for white and the cv2 function inRange(). Then, the threat image is cropped to a square using a threshold value using the form_square() function. The images are padded dynamically so that when the threat is rotated 45 degrees, the whole threat image is covered and nothing is cut out. Loop through the background images and find the coordinates of the centre of the largest contour found in the background image using get_xy() function. Next, we fix the threat image according to the x, y position in background image. Finally we lace the threat in the background image using the place_threat() function.

The saved images are stored in the output folder for future reference.

Documentation:

  1. read_images(path): This function reads the .jpg files from a specific location and returns a list of images as numpy array and the number of images read.
  2. form_square(image): This function takes in a image(threat, with the background set to black using the inRange() OpenCV function) and finds the left, right, top, and bottom of the threat object, therby removing the extra background. NOTE: The threat object is not guaranteed to be a square. So this function also checks the image for the height and width of the cropped threat image and pad black portion in top-buttom of left-right making it a square image.
  3. pad_image(image): This function calculates the diagonal length of the image and set the height and width of the image equal to diagonal length.
  4. get_xy(background): This function craeates a binary image of the baggage using inRange() function and then inverts it. Next it finds the contours in the binary image and then the contour with maximum area is selected and the center of the countour is found using moments().
  5. place_threat(background, threat, x=0, y=0): This function places the threat image in the background image in (x, y) location on the background. Defaults to x=0 and y=0.
Owner
Arya Shah
Computer Science Junior with Honors in Business Systems | Software Development Engineering | Machine Learning |
Arya Shah
PyTorch implementation of Self-supervised Contrastive Regularization for DG (SelfReg)

SelfReg PyTorch official implementation of Self-supervised Contrastive Regularization for Domain Generalization (SelfReg, https://arxiv.org/abs/2104.0

64 Dec 16, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
A python library for time-series smoothing and outlier detection in a vectorized way.

tsmoothie A python library for time-series smoothing and outlier detection in a vectorized way. Overview tsmoothie computes, in a fast and efficient w

Marco Cerliani 517 Dec 28, 2022
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
Example of a Quantum LSTM

Example of a Quantum LSTM

Riccardo Di Sipio 36 Oct 31, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
Library for converting from RGB / GrayScale image to base64 and back.

Library for converting RGB / Grayscale numpy images from to base64 and back. Installation pip install -U image_to_base_64 Conversion RGB to base 64 b

Vladimir Iglovikov 16 Aug 28, 2022
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022