Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

Related tags

Deep Learningmmo
Overview

MMO: Meta Multi-Objectivization for Software Configuration Tuning

This repository contains the data and code for the following paper that is currently submitting for publication:

Tao Chen and Miqing Li. MMO: Meta Multi-Objectivization for Software Configuration Tuning.

Introduction

In software configuration tuning, different optimizers have been designed to optimize a single performance objective (e.g.,minimizing latency), yet there is still little success in preventing (or mitigating) the search from being trapped in local optima — a hard nut to crack due to the complex configuration landscape and expensive measurement. To tackle this challenge, in this paper, we take a different perspective. Instead of focusing on improving the optimizer, we work on the level of optimization model and propose a meta multi-objectivization (MMO) model that considers an auxiliary performance objective (e.g., throughput in addition to latency). What makes this model unique is that we do not optimize the auxiliary performance objective, but rather use it to make similarly-performing while different configurations less comparable (i.e. Pareto nondominated to each other), thus preventing the search from being trapped in local optima. Importantly, we show how to effectively use the MMO model without worrying about its weight — the only yet highly sensitive parameter that can determine its effectiveness. This is achieved by designing a new normalization method that allows an optimizer to adaptively find the right objective bounds when guiding the tuning. Experiments on 22 cases from 11 real-world software systems/environments confirm that our MMO model with the new normalization performs better than its state-of-the-art single-objective counterparts on 18 out of 22 cases while achieving up to 2.09x speedup. For 15 cases, the new normalization also enables the MMO model to outperform the instance when using it with the normalization proposed in our prior FSE work under pre-tuned best weights, saving a great amount of resources which would be otherwise necessary to find a good weight. We also demonstrate that the MMO model with the new normalization can consolidate FLASH, a recent model-based tuning tool, on 15 out of 22 cases with 1.22x speedup in general.

Data Result

The dataset of this work can be accessed via the Zenodo link here. In particular, the zip file contains all the raw data as reported in the paper; most of the structures are self-explained but we wish to highlight the following:

  • The data under the folder 1.0-0.0 and 0.0-1.0 are for the single-objective optimizers. The former uses O1 as the target performance objective while the latter uses O2 as the target. The data under other folders named by the subject systems are for the MMO and PMO. The result under the weight folder 1.0 are for MMO while all other folders represent different weight values, containing the data for MMO-FSE.

  • For those data of MMO, MMO-FSE, and PMO, the folder 0 and 1 denote using uses O1 and O2 as the target performance objective, respectively.

  • In the lowest-level folder where the data is stored (i.e., the sas folder), SolutionSet.rtf contains the results over all repeated runs; SolutionSetWithMeasurement.rtf records the results over different numbers of measurements.

Souce Code

The code folder contains all the information about the source code, as well as an executable jar file in the executable folder .

Running the Experiments

To run the experiments, one can download the mmo-experiments.jar from the aforementioned repository (under the executable folder). Since the artifacts were written in Java, we assume that the JDK/JRE has already been installed. Next, one can run the code using java -jar mmo-experiments.jar [subject] [runs], where [subject] and [runs] denote the subject software system and the number of repeated run (this is an integer and 50 is the default if it is not specified), respectively. The keyword for the systems/environments used in the paper are:

  • trimesh
  • x264
  • storm-wc
  • storm-rs
  • dnn-sa
  • dnn-adiac
  • mariadb
  • vp9
  • mongodb
  • lrzip
  • llvm

For example, running java -jar mmo-experiments.jar trimesh would execute experiments on the trimesh software for 50 repeated runs.

For each software system, the experiment consists of the runs for MMO, MMO-FSE with all weight values, PMO and the four state-of-the-art single-objective optimizers, as well as the FLASH and FLASH_MMO. All the outputs would be stored in the results folder at the same directory as the executable jar file.

All the measurement data of the subject configurable systems have been placed inside the mmo-experiments.jar.

IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
Pytorch implementation of Hinton's Dynamic Routing Between Capsules

pytorch-capsule A Pytorch implementation of Hinton's "Dynamic Routing Between Capsules". https://arxiv.org/pdf/1710.09829.pdf Thanks to @naturomics fo

Tim Omernick 625 Oct 27, 2022
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 06, 2023
deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

41 Dec 12, 2022
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

Google 702 Jan 02, 2023
BERT model training impelmentation using 1024 A100 GPUs for MLPerf Training v1.1

Pre-trained checkpoint and bert config json file Location of checkpoint and bert config json file This MLCommons members Google Drive location contain

SAIT (Samsung Advanced Institute of Technology) 12 Apr 27, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Title: Heart-Failure-Classification

This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best

Akarsh Singh 2 Sep 13, 2022
A library for building and serving multi-node distributed faiss indices.

About Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It fol

Meta Research 170 Dec 30, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

3k Jan 08, 2023