The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

Overview

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral)

MM | ArXiv

This repository implements the paper "Text-Guided Neural Image Inpainting" by Lisai Zhang, Qingcai Chen, Baotian Hu and Shuoran Jiang. Given one masked image, the proposed TDANet generates diverse plausible results according to guidance text.

Inpainting example

Manipulation Extension example

Getting started

Installation

This code was tested with Pytoch 1.2.0, CUDA 10.1, Python 3.6 and Ubuntu 16.04 with a 2080Ti GPU

pip install visdom dominate
  • Clone this repo (we suggest to only clone the depth 1 version):
git clone https://github.com/idealwhite/tdanet --depth 1
cd tdanet
  • Download the dataset and pre-processed files as in following steps.

Datasets

  • CUB_200: dataset from Caltech-UCSD Birds 200.
  • COCO: object detection 2014 datset from MS COCO.
  • pre-processed datafiles: train/test split, caption-image mapping, image sampling and pre-trained DAMSM from GoogleDrive and extarct them to dataset/ directory as specified in config.bird.yml/config.coco.yml.

Training Demo

python train.py --name tda_bird  --gpu_ids 0 --model tdanet --mask_type 0 1 2 3 --img_file ./datasets/CUB_200_2011/train.flist --mask_file ./datasets/CUB_200_2011/train_mask.flist --text_config config.bird.yml
  • Important: Add --mask_type in options/base_options.py for different training masks. --mask_file path is needed for object mask, use train_mask.flist for CUB and image_mask_coco_all.json for COCO. --text_config refer to the yml configuration file for text setup, --img_file is the image file dir or file list.
  • To view training results and loss plots, run python -m visdom.server and copy the URL http://localhost:8097.
  • Training models will be saved under the ./checkpoints folder.
  • More training options can be found in ./options folder.
  • Suggestion: use mask type 0 1 2 3 for CUB dataset and 0 1 2 4 for COCO dataset. Train more than 2000 epochs for CUB and 200 epochs for COCO.

Evaluation Demo

Test

python test.py --name tda_bird  --img_file datasets/CUB_200_2011/test.flist --results_dir results/tda_bird  --mask_file datasets/CUB_200_2011/test_mask.flist --mask_type 3 --no_shuffle --gpu_ids 0 --nsampling 1 --no_variance

Note:

  • Remember to add the --no_variance option to get better performance.
  • For COCO object mask, use image_mask_coco_all.json as the mask file..

A eval_tda_bird.flist will be generated after the test. Then in the evaluation, this file is used as the ground truth file list:

python evaluation.py --batch_test 60 --ground_truth_path eval_tda_bird.flist --save_path results/tda_bird
  • Add --ground_truth_path to the dir of ground truth image path or list. --save_path as the result dir.

Pretrained Models

Download the pre-trained models bird inpainting or coco inpainting and put them undercheckpoints/ directory.

GUI

  • Install the PyQt5 for GUI operation
pip install PyQt5

The GUI could now only avaliable in debug mode, please refer to this issues for detailed instructions. The author is not good at solving PyQt5 problems, wellcome contrbutions.

TODO

  • Debug the GUI application
  • Further improvement on COCO quality.

License

This software is for educational and academic research purpose only. If you wish to obtain a commercial royalty bearing license to this software, please contact us at [email protected].

Acknowledge

We would like to thanks Zheng et al. for providing their source code. This project is fit from their greate Pluralistic Image Completion Project.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{10.1145/3394171.3414017,
author = {Zhang, Lisai and Chen, Qingcai and Hu, Baotian and Jiang, Shuoran},
title = {Text-Guided Neural Image Inpainting},
year = {2020},
booktitle = {Proceedings of the 28th ACM International Conference on Multimedia},
pages = {1302–1310},
location = {Seattle, WA, USA},
}
Owner
LisaiZhang
Enjoy thinking about everything.
LisaiZhang
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

Siavash Eliasi 33 May 31, 2022
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022