Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Related tags

Deep LearningSLATER
Overview

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.org/abs/2105.08059)

Korkmaz, Y., Dar, S. U., Yurt, M., Ozbey, M., & Cukur, T. (2021). Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers. arXiv preprint arXiv:2105.08059.


Demo

The following commands are used to train and test SLATER to reconstruct undersampled MR acquisitions from single- and multi-coil datasets. You can download pretrained network snaphots and sample datasets from the links given below.

For training the MRI prior we use fully-sampled images, for testing undersampling is performed based on selected acceleration rate. We have used AdamOptimizer in training, RMSPropOptimizer with momentum parameter 0.9 in testing/inference. In the current settings AdamOptimizer is used, you can change underlying optimizer class in dnnlib/tflib/optimizer.py file. You can insert additional paramaters like momentum to the line 87 in the optimizer.py file.

Sample training command for multi-coil (fastMRI) dataset:

python run_network.py --train --gpus=0 --expname=fastmri_t1_train --dataset=fastmri-t1 --data-dir=datasets/multi-coil-datasets/train

Sample reconstruction/test command for fastMRI dataset:

python run_recon_multi_coil.py reconstruct-complex-images --network=pretrained_snapshots/fastmri-t1/network-snapshot-001282.pkl --dataset=fastmri-t1 --acc-rate=4 --contrast=t1 --data-dir=datasets/multi-coil-datasets/test

Sample training command for single-coil (IXI) dataset:

python run_network.py --train --gpus=0 --expname=ixi_t1_train --dataset=ixi_t1 --data-dir=datasets/single-coil-datasets/train

Sample reconstruction/test command for IXI dataset:

python run_recon_single_coil.py reconstruct-magnitude-images --network=pretrained_snapshots/ixi-t1/network-snapshot-001282.pkl --dataset=ixi_t1_test --acc-rate=4 --contrast=t1 --data-dir=datasets/single-coil-datasets/test

Datasets

For IXI dataset image dimensions are 256x256. For fastMRI dataset image dimensions vary with contrasts. (T1: 256x320, T2: 288x384, FLAIR: 256x320).

SLATER requires datasets in the tfrecords format. To create tfrecords file containing new datasets you can use dataset_tool.py:

To create single-coil datasets you need to give magnitude images to dataset_tool.py with create_from_images function by just giving image directory containing images in .png format. We included undersampling masks under datasets/single-coil-datasets/test.

To create multi-coil datasets you need to provide hdf5 files containing fully sampled coil-combined complex images in a variable named 'images_fs' with shape [num_of_images,x,y] (can be modified accordingly). To do this, you can use create_from_hdf5 function in dataset_tool.py.

The MRI priors are trained on coil-combined datasets that are saved in tfrecords files with a 3-channel order of [real, imaginary, dummy]. For test purposes, we included sample coil-sensitivity maps (complex variable with 4-dimensions [x,y,num_of_image,num_of_coils] named 'coil_maps') and undersampling masks (3-dimensions [x,y, num_of_image] named 'map') in the datasets/multi-coil-datasets/test folder in hdf5 format.

Coil-sensitivity-maps are estimated using ESPIRIT (http://people.eecs.berkeley.edu/~mlustig/Software.html). Network implementations use libraries from Gansformer (https://github.com/dorarad/gansformer) and Stylegan-2 (https://github.com/NVlabs/stylegan2) repositories.


Pretrained networks

You can download pretrained network snapshots and datasets from these links. You need to place downloaded folders (datasets and pretrained_snapshots folders) under the main repo to run those sample test commands given above.

Pretrained network snapshots for IXI-T1 and fastMRI-T1 can be downloaded from Google Drive: https://drive.google.com/drive/folders/1_69T1KUeSZCpKD3G37qgDyAilWynKhEc?usp=sharing

Sample training and test datasets for IXI-T1 and fastMRI-T1 can be downloaded from Google Drive: https://drive.google.com/drive/folders/1hLC8Pv7EzAH03tpHquDUuP-lLBasQ23Z?usp=sharing


Notice for training with multi-coil datasets

To train multi-coil (complex) datasets you need to remove/add some lines in training_loop.py:

  • Comment out line 8.
  • Delete comment at line 9.
  • Comment out line 23.

Citation

You are encouraged to modify/distribute this code. However, please acknowledge this code and cite the paper appropriately.

@article{korkmaz2021unsupervised,
  title={Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers},
  author={Korkmaz, Yilmaz and Dar, Salman UH and Yurt, Mahmut and {\"O}zbey, Muzaffer and {\c{C}}ukur, Tolga},
  journal={arXiv preprint arXiv:2105.08059},
  year={2021}
  }

(c) ICON Lab 2021


Prerequisites

  • Python 3.6 --
  • CuDNN 10.1 --
  • TensorFlow 1.14 or 1.15

Acknowledgements

This code uses libraries from the StyleGAN-2 (https://github.com/NVlabs/stylegan2) and Gansformer (https://github.com/dorarad/gansformer) repositories.

For questions/comments please send me an email: [email protected]


Owner
ICON Lab
ICON Lab
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes

Naive-Bayes Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes Downloading Data Set Use our Breast Cancer Wisconsin Data Set Also you can

Faeze Habibi 0 Apr 06, 2022
Unofficial implementation (replicates paper results!) of MINER: Multiscale Implicit Neural Representations in pytorch-lightning

MINER_pl Unofficial implementation of MINER: Multiscale Implicit Neural Representations in pytorch-lightning. 📖 Ref readings Laplacian pyramid explan

AI葵 51 Nov 28, 2022
Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python

FlappyAI Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python Everything Used Genetic Algorithm especially NEAT conce

Eryawan Presma Y. 2 Mar 24, 2022
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"

Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to

MIDAS, IIIT Delhi 2 Aug 29, 2022
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022