Learning to Stylize Novel Views

Overview

Learning to Stylize Novel Views

[Project] [Paper]

Contact: Hsin-Ping Huang ([email protected])

Introduction

We tackle a 3D scene stylization problem - generating stylized images of a scene from arbitrary novel views given a set of images of the same scene and a reference image of the desired style as inputs. Direct solution of combining novel view synthesis and stylization approaches lead to results that are blurry or not consistent across different views. We propose a point cloud-based method for consistent 3D scene stylization. First, we construct the point cloud by back-projecting the image features to the 3D space. Second, we develop point cloud aggregation modules to gather the style information of the 3D scene, and then modulate the features in the point cloud with a linear transformation matrix. Finally, we project the transformed features to 2D space to obtain the novel views. Experimental results on two diverse datasets of real-world scenes validate that our method generates consistent stylized novel view synthesis results against other alternative approaches.

Paper

Learning to Stylize Novel Views
Hsin-Ping Huang, Hung-Yu Tseng, Saurabh Saini, Maneesh Singh, and Ming-Hsuan Yang
IEEE International Conference on Computer Vision (ICCV), 2021

Please cite our paper if you find it useful for your research.

@inproceedings{huang_2021_3d_scene_stylization,
   title = {Learning to Stylize Novel Views},
   author={Huang, Hsin-Ping and Tseng, Hung-Yu and Saini, Saurabh and Singh, Maneesh and Yang, Ming-Hsuan},
   booktitle = {ICCV},
   year={2021}
}

Installation and Usage

Kaggle account

  • To download the WikiArt dataset, you would need to register for a Kaggle account.
  1. Sign up for a Kaggle account at https://www.kaggle.com.
  2. Go to top right and select the 'Account' tab of your user profile (https://www.kaggle.com/username/account)
  3. Select 'Create API Token'. This will trigger the download of kaggle.json.
  4. Place this file in the location ~/.kaggle/kaggle.json
  5. chmod 600 ~/.kaggle/kaggle.json

Install

  • Clone this repo
git clone https://github.com/hhsinping/stylescene.git
cd stylescene
  • Create conda environment and install required packages
  1. Python 3.9
  2. Pytorch 1.7.1, Torchvision 0.8.2, Pytorch-lightning 0.7.1
  3. matplotlib, scikit-image, opencv-python, kaggle
  4. Pointnet2_Pytorch
  5. Pytorch3D 0.4.0
conda create -n stylescene python=3.9.1
conda activate stylescene
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 -f https://download.pytorch.org/whl/torch_stable.html
pip install matplotlib==3.4.1 scikit-image==0.18.1 opencv-python==4.5.1.48 pytorch-lightning==0.7.1 kaggle
pip install "git+git://github.com/erikwijmans/Pointnet2_PyTorch.git#egg=pointnet2_ops&subdirectory=pointnet2_ops_lib"
curl -LO https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz
tar xzf 1.10.0.tar.gz
export CUB_HOME=$PWD/cub-1.10.0
git clone https://github.com/facebookresearch/pytorch3d.git
cd pytorch3d
git checkout 340662e
pip install -e .
cd -

Our code has been tested on Ubuntu 20.04, CUDA 11.1 with a RTX 2080 Ti GPU.

Datasets

  • Download datasets, pretrained model, complie C++ code using the following script. This script will:
  1. Download Tanks and Temples dataset
  2. Download continous testing sequences of Truck, M60, Train, Playground scenes
  3. Download 120 testing styles
  4. Download WikiArt dataset from Kaggle
  5. Download pretrained models
  6. Complie the c++ code in preprocess/ext/preprocess/ and stylescene/ext/preprocess/
bash download_data.sh
  • Preprocess Tanks and Temples dataset

This script will generate points.npy and r31.npy for each training and testing scene.
points.npy records the 3D coordinates of the re-projected point cloud and its correspoinding 2D positions in source images
r31.npy contains the extracted VGG features of sources images

cd preprocess
python Get_feat.py
cd ..

Testing example

cd stylescene/exp
vim ../config.py
Set Train = False
Set Test_style = [0-119 (refer to the index of style images in ../../style_data/style120/)]

To evaluate the network you can run

python exp.py --net fixed_vgg16unet3_unet4.64.3 --cmd eval --iter [n_iter/last] --eval-dsets tat-subseq --eval-scale 0.25

Generated images can be found at experiments/tat_nbs5_s0.25_p192_fixed_vgg16unet3_unet4.64.3/tat_subseq_[sequence_name]_0.25_n4/

Training example

cd stylescene/exp
vim ../config.py
Set Train = True

To train the network from scratch you can run

python exp.py --net fixed_vgg16unet3_unet4.64.3 --cmd retrain

To train the network from a checkpoint you can run

python exp.py --net fixed_vgg16unet3_unet4.64.3 --cmd resume

Generated images can be found at ./log
Saved model and training log can be found at experiments/tat_nbs5_s0.25_p192_fixed_vgg16unet3_unet4.64.3/

Acknowledgement

The implementation is partly based on the following projects: Free View Synthesis, Linear Style Transfer, PointNet++, SynSin.

Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement

USAF - MIT Artificial Intelligence Accelerator 46 Dec 15, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

Ming 74 Dec 28, 2022
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M

Cheng Zhang 27 Oct 12, 2022
CS550 Machine Learning course project on CNN Detection.

CNN Detection (CS550 Machine Learning Project) Team Members (Tensor) : Yadava Kishore Chodipilli (11940310) Thashmitha BS (11941250) This is a work do

yaadava_kishore 2 Jan 30, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

117 Dec 27, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch

Mixup: Beyond Empirical Risk Minimization in PyTorch This is an unofficial PyTorch implementation of mixup: Beyond Empirical Risk Minimization. The co

Harry Yang 121 Dec 17, 2022
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

Wang jiahao 3 Oct 31, 2022