Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Related tags

Deep LearningAugSelf
Overview

Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Accepted to NeurIPS 2021

thumbnail

TL;DR: Learning augmentation-aware information by predicting the difference between two augmented samples improves the transferability of representations.

Dependencies

conda create -n AugSelf python=3.8 pytorch=1.7.1 torchvision=0.8.2 cudatoolkit=10.1 ignite -c pytorch
conda activate AugSelf
pip install scipy tensorboard kornia==0.4.1 sklearn

Checkpoints

We provide ImageNet100-pretrained models in this Dropbox link.

Pretraining

We here provide SimSiam+AugSelf pretraining scripts. For training the baseline (i.e., no AugSelf), remove --ss-crop and --ss-color options. For using other frameworks like SimCLR, use the --framework option.

STL-10

CUDA_VISIBLE_DEVICES=0 python pretrain.py \
    --logdir ./logs/stl10/simsiam/aug_self \
    --framework simsiam \
    --dataset stl10 \
    --datadir DATADIR \
    --model resnet18 \
    --batch-size 256 \
    --max-epochs 200 \
    --ss-color 1.0 --ss-crop 1.0

ImageNet100

python pretrain.py \
    --logdir ./logs/imagenet100/simsiam/aug_self \
    --framework simsiam \
    --dataset imagenet100 \
    --datadir DATADIR \
    --batch-size 256 \
    --max-epochs 500 \
    --model resnet50 \
    --base-lr 0.05 --wd 1e-4 \
    --ckpt-freq 50 --eval-freq 50 \
    --ss-crop 0.5 --ss-color 0.5 \
    --num-workers 16 --distributed

Evaluation

Our main evaluation setups are linear evaluation on fine-grained classification datasets (Table 1) and few-shot benchmarks (Table 2).

linear evaluation

CUDA_VISIBLE_DEVICES=0 python transfer_linear_eval.py \
    --pretrain-data imagenet100 \
    --ckpt CKPT \
    --model resnet50 \
    --dataset cifar10 \
    --datadir DATADIR \
    --metric top1

few-shot

CUDA_VISIBLE_DEVICES=0 python transfer_few_shot.py \
    --pretrain-data imagenet100 \
    --ckpt CKPT \
    --model resnet50 \
    --dataset cub200 \
    --datadir DATADIR
Owner
hankook
hankook
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation(DANN), support Office-31 and Office-Home dataset

DANN A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation Prerequisites Linux or OSX NVIDIA GPU + CUDA (may CuDNN) and corre

8 Apr 16, 2022
Pytorch library for fast transformer implementations

Transformers are very successful models that achieve state of the art performance in many natural language tasks

Idiap Research Institute 1.3k Dec 30, 2022
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi

Valentin Khrulkov 22 Oct 24, 2022
FridaHookAppTool - Frida Hook App Tool With Python

FridaHookAppTool(以下是Hook mpaas框架的例子) mpaas移动开发框架ios端抓包hook脚本 使用方法:链接数据线,开启burp设置

13 Nov 30, 2022
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

Jinkai Zheng 32 Apr 04, 2022
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022
Half Instance Normalization Network for Image Restoration

HINet Half Instance Normalization Network for Image Restoration, based on https://github.com/megvii-model/HINet. Dependencies NumPy PyTorch, preferabl

Holy Wu 4 Jun 06, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

9 Sep 01, 2022
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022