Text classification on IMDB dataset using Keras and Bi-LSTM network

Overview

Text classification on IMDB dataset using Keras and Bi-LSTM

Text classification on IMDB dataset using Keras and Bi-LSTM network.

Usage

python3 main.py

Hyper Parameter

Epoch: 12
Batch size: 128
Dropout: 0.5

Model Accuracy

Loss: 0.0574
Accuracy: 0.9809
Validation Loss: 0.6073
Validation Accuracy: 0.8534

img.png

Terminology

Recurrent Neural Network

Recurrent neural networks (RNN) is a type of neural network that uses previous information during model training. It remember the sequence of the data and use data patterns to give the prediction.

RNN uses feedback loops which makes it different from other neural networks. Those loops help RNN to process the sequence of the data. This loop allows the data to be shared to different nodes and predictions according to the gathered information. This process can be called memory.

RNN and the loops create the networks that allow RNN to share information, and also, the loop structure allows the neural network to take the sequence of input data. RNN converts an independent variable to a dependent variable for its next layer.

rnn.png

Long Short Term Memory

Long short term memory networks (LSTM) are a special kind of RNN. They were introduced to avoid the long-term dependency problem. In regular RNN, the problem frequently occurs when connecting previous information to new information. If RNN could do this, they’d be very useful. This problem is called long-term dependency.

The repeating module in a standard RNN contains a single layer. To remember the information for long periods in the default behaviour of the LSTM. LSTM networks have a similar structure to the RNN, but the memory module or repeating module has a different LSTM. The block diagram of the repeating module will look like the image below.

lstm.png

Bi-Directional Long Short Term Memory

Bidirectional long-short term memory (Bi-LSTM) is the process of making any neural network o have the sequence information in both directions backwards (future to past) or forward (past to future).

In bidirectional, our input flows in two directions, making a Bi-LSTM different from the regular LSTM. With the regular LSTM, we can make input flow in one direction, either backwards or forward. However, in bidirectional, we can make the input flow in both directions to preserve the future and the past information. For a better explanation, let’s have an example.

In the sentence "boys go to…" we can not fill the blank space. Still, when we have a future sentence “boys come out of school”, we can easily predict the past blank space the similar thing we want to perform by our model and bidirectional LSTM allows the neural network to perform this.

bi-lstm.png

Owner
Hamza Rashid
PHP, Laravel, Symfony, MySQL, Python, JavaScript, jQuery, Bootstrap, Sass, Git
Hamza Rashid
Residual2Vec: Debiasing graph embedding using random graphs

Residual2Vec: Debiasing graph embedding using random graphs This repository contains the code for S. Kojaku, J. Yoon, I. Constantino, and Y.-Y. Ahn, R

SADAMORI KOJAKU 5 Oct 12, 2022
Code for papers "Generation-Augmented Retrieval for Open-Domain Question Answering" and "Reader-Guided Passage Reranking for Open-Domain Question Answering", ACL 2021

This repo provides the code of the following papers: (GAR) "Generation-Augmented Retrieval for Open-domain Question Answering", ACL 2021 (RIDER) "Read

morning 49 Dec 26, 2022
Associated Repository for "Translation between Molecules and Natural Language"

MolT5: Translation between Molecules and Natural Language Associated repository for "Translation between Molecules and Natural Language". Table of Con

67 Dec 15, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

L3Cube-MahaCorpus L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual

21 Dec 17, 2022
Pytorch implementation of Tacotron

Tacotron-pytorch A pytorch implementation of Tacotron: A Fully End-to-End Text-To-Speech Synthesis Model. Requirements Install python 3 Install pytorc

soobin seo 203 Dec 02, 2022
Deep learning for NLP crash course at ABBYY.

Deep NLP Course at ABBYY Deep learning for NLP crash course at ABBYY. Suggested textbook: Neural Network Methods in Natural Language Processing by Yoa

Dan Anastasyev 597 Dec 18, 2022
Natural Language Processing

NLP Natural Language Processing apps Multilingual_NLP.py start #This script is demonstartion of Mul

Ritesh Sharma 1 Oct 31, 2021
This repository contains all the source code that is needed for the project : An Efficient Pipeline For Bloom’s Taxonomy Using Natural Language Processing and Deep Learning

Pipeline For NLP with Bloom's Taxonomy Using Improved Question Classification and Question Generation using Deep Learning This repository contains all

Rohan Mathur 9 Jul 17, 2021
jiant is an NLP toolkit

🚨 Update 🚨 : As of 2021/10/17, the jiant project is no longer being actively maintained. This means there will be no plans to add new models, tasks,

ML² AT CILVR 1.5k Dec 28, 2022
Data and code to support "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley)

anlp21 Course materials for "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley) Syllabus: http://people.ischool.berkeley.edu/~dba

David Bamman 48 Dec 06, 2022
Shirt Bot is a discord bot which uses GPT-3 to generate text

SHIRT BOT · Shirt Bot is a discord bot which uses GPT-3 to generate text. Made by Cyclcrclicly#3420 (474183744685604865) on Discord. Support Server EX

31 Oct 31, 2022
A simple tool to update bib entries with their official information (e.g., DBLP or the ACL anthology).

Rebiber: A tool for normalizing bibtex with official info. We often cite papers using their arXiv versions without noting that they are already PUBLIS

(Bill) Yuchen Lin 2k Jan 01, 2023
A combination of autoregressors and autoencoders using XLNet for sentiment analysis

A combination of autoregressors and autoencoders using XLNet for sentiment analysis Abstract In this paper sentiment analysis has been performed in or

James Zaridis 2 Nov 20, 2021
Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet.

Sonnet finder Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet. Usage This is a Python scrip

Marcel Bollmann 11 Sep 25, 2022
Code for Text Prior Guided Scene Text Image Super-Resolution

Code for Text Prior Guided Scene Text Image Super-Resolution

82 Dec 26, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Neural text generators like the GPT models promise a general-purpose means of manipulating texts.

Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m

Jeffrey M. Binder 20 Jan 09, 2023
Two-stage text summarization with BERT and BART

Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter

Yukai Yang (Alexis) 6 Oct 22, 2022
Product-Review-Summarizer - Created a product review summarizer which clustered thousands of product reviews and summarized them into a maximum of 500 characters, saving precious time of customers and helping them make a wise buying decision.

Product-Review-Summarizer - Created a product review summarizer which clustered thousands of product reviews and summarized them into a maximum of 500 characters, saving precious time of customers an

Parv Bhatt 1 Jan 01, 2022