Github for the conference paper GLOD-Gaussian Likelihood OOD detector

Related tags

Deep LearningGLOD
Overview

FOOD - Fast OOD Detector

Pytorch implamentation of the confernce peper FOOD arxiv link.

Abstract

Deep neural networks (DNNs) perform well at classifying inputs associated with the classes they have been trained on, which are known as in-distribution inputs. However, out-of-distribution (OOD) inputs pose a great challenge to DNNs and consequently represent a major risk when DNNs are implemented in safety-critical systems. Extensive research has been performed in the domain of OOD detection. However, current state-of-the-art methods for OOD detection suffer from at least one of the following limitations: (1) increased inference time - this limits existing methods' applicability to many real-world applications, and (2) the need for OOD training data - such data can be difficult to acquire and may not be representative enough, thus limiting the ability of the OOD detector to generalize. In this paper, we propose FOOD -- Fast Out-Of-Distribution detector -- an extended DNN classifier capable of efficiently detecting OOD samples with minimal inference time overhead. Our architecture features a DNN with a final Gaussian layer combined with the log likelihood ratio statistical test and an additional output neuron for OOD detection. Instead of using real OOD data, we use a novel method to craft artificial OOD samples from in-distribution data, which are used to train our OOD detector neuron. We evaluate FOOD's detection performance on the SVHN, CIFAR-10, and CIFAR-100 datasets. Our results demonstrate that in addition to achieving state-of-the-art performance, FOOD is fast and applicable to real-world applications.

What is in this repository ?

We provide all the necessary tools required in order evaluate OOD detectors. Including our state of the art OOD detector FOOD. The repository include the following:

  1. FOOD package-containing pytorch implamentation of FOOD and OOD evaluation utilities.
  2. Jupyter notebooks demonstrating how to use the FOOD package
  3. Pretrained models that were used for our paper evaluation link
  4. Efficient Python implamentation of other OOD detection techniques:
    1. MSP-baseline by Hendrycks & Gimpel et al. 2016
    2. Mahalanobis equal weights by Lee et al. 2018
    3. Outlier Exposure by Hendrycks et al. 2018
    4. Self supervised Learning for OOD detection by(Evaluation Only) Mohseni et al. 2020

FOOD's Results

In this section we provide a brief summerization of FOODs' detection results.

TNR95 table as accepted in the litriture:

alt text

Speed Comparison

alt text

alt text

FOOD's citation

Cite FOOD using this bibtext:

@article{amit2020glod,
  title={GLOD: Gaussian Likelihood Out of Distribution Detector},
  author={Amit, Guy and Levy, Moshe and Rosenberg, Ishai and Shabtai, Asaf and Elovici, Yuval},
  journal={arXiv preprint arXiv:2008.06856},
  year={2020}
}

Software Requirements

matplotlib=3.2.1=0
numpy=1.18.5=py38h6530119_0
numpy-base=1.18.5=py38hc3f5095_0
pandas=1.0.5=py38h47e9c7a_0
pip=20.1.1=py38_1
python=3.8.3=he1778fa_0
pytorch=1.5.1=py3.8_cuda102_cudnn7_0
scikit-learn=0.23.1=py38h25d0782_0
scipy=1.5.0=py38h9439919_0
setuptools=47.3.1=py38_0
torchvision=0.6.1=py38_cu102
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Introduction We introduce the task of dense captioning in 3D scans from commodity RGB-D sensor

Dave Z. Chen 79 Nov 07, 2022
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022
Implementation of GGB color space

GGB Color Space This package is implementation of GGB color space from Development of a Robust Algorithm for Detection of Nuclei and Classification of

Resha Dwika Hefni Al-Fahsi 2 Oct 06, 2021
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021
Language-Agnostic Website Embedding and Classification

Homepage2Vec Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf Homepage2Vec is a pre-

25 Dec 27, 2022
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
Code for ViTAS_Vision Transformer Architecture Search

Vision Transformer Architecture Search This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search fo

46 Dec 17, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021