Automatic differentiation with weighted finite-state transducers.

Related tags

Deep Learninggtn
Overview
logo

GTN: Automatic Differentiation with WFSTs

Quickstart | Installation | Documentation

facebookresearch Documentation Status

What is GTN?

GTN is a framework for automatic differentiation with weighted finite-state transducers. The framework is written in C++ and has bindings to Python.

The goal of GTN is to make adding and experimenting with structure in learning algorithms much simpler. This structure is encoded as weighted automata, either acceptors (WFSAs) or transducers (WFSTs). With gtn you can dynamically construct complex graphs from operations on simpler graphs. Automatic differentiation gives gradients with respect to any input or intermediate graph with a single call to gtn.backward.

Also checkout the repository gtn_applications which consists of GTN applications to Handwriting Recognition (HWR), Automatic Speech Recognition (ASR) etc.

Quickstart

First install the python bindings.

The following is a minimal example of building two WFSAs with gtn, constructing a simple function on the graphs, and computing gradients. Open In Colab

import gtn

# Make some graphs:
g1 = gtn.Graph()
g1.add_node(True)  # Add a start node
g1.add_node()  # Add an internal node
g1.add_node(False, True)  # Add an accepting node

# Add arcs with (src node, dst node, label):
g1.add_arc(0, 1, 1)
g1.add_arc(0, 1, 2)
g1.add_arc(1, 2, 1)
g1.add_arc(1, 2, 0)

g2 = gtn.Graph()
g2.add_node(True, True)
g2.add_arc(0, 0, 1)
g2.add_arc(0, 0, 0)

# Compute a function of the graphs:
intersection = gtn.intersect(g1, g2)
score = gtn.forward_score(intersection)

# Visualize the intersected graph:
gtn.draw(intersection, "intersection.pdf")

# Backprop:
gtn.backward(score)

# Print gradients of arc weights 
print(g1.grad().weights_to_list()) # [1.0, 0.0, 1.0, 0.0]

Installation

Requirements

  • A C++ compiler with good C++14 support (e.g. g++ >= 5)
  • cmake >= 3.5.1, and make

Python

Install the Python bindings with

pip install gtn

Building C++ from source

First, clone the project:

git clone [email protected]:facebookresearch/gtn.git && cd gtn

Create a build directory and run CMake and make:

mkdir -p build && cd build
cmake ..
make -j $(nproc)

Run tests with:

make test

Run make install to install.

Python bindings from source

Setting up your environment:

conda create -n gtn_env
conda activate gtn_env

Required dependencies:

cd bindings/python
conda install setuptools

Use one of the following commands for installation:

python setup.py install

or, to install in editable mode (for dev):

python setup.py develop

Python binding tests can be run with make test, or with

python -m unittest discover bindings/python/test

Run a simple example:

python bindings/python/examples/simple_graph.py

Citing this Repository

If you use the code in this repository, please cite:

Awni Hannun, Vineel Pratap, Jacob Kahn and Wei-Ning Hsu. Differentiable Weighted Finite-State Transducers. arXiv 2010.01003, 2020.

@article{hannun2020dwfst,
  title={Differentiable Weighted Finite-State Transducers},
  author={Hannun, Awni and Pratap, Vineel and Kahn, Jacob and Hsu, Wei-Ning},
  journal={arXiv preprint arXiv:2010.01003},
  year={2020}
}

License

GTN is licensed under a MIT license. See LICENSE.

🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.

Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl

idealo 4k Jan 08, 2023
Learning to Initialize Neural Networks for Stable and Efficient Training

GradInit This repository hosts the code for experiments in the paper, GradInit: Learning to Initialize Neural Networks for Stable and Efficient Traini

Chen Zhu 124 Dec 30, 2022
Yoloxkeypointsegment - An anchor-free version of YOLO, with a simpler design but better performance

Introduction 关键点版本:已完成 全景分割版本:已完成 实例分割版本:已完成 YOLOX is an anchor-free version of

23 Oct 20, 2022
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.

Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord

Pachter Lab 45 Dec 23, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

Time2box Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

LingCai 4 Aug 23, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
A curated list of awesome Deep Learning tutorials, projects and communities.

Awesome Deep Learning Table of Contents Books Courses Videos and Lectures Papers Tutorials Researchers Websites Datasets Conferences Frameworks Tools

Christos 20k Jan 05, 2023
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022