Ansible tools for operating and managing fleets of Blinksticks in harmony using the Blinkstick Python library.

Overview

Blinkstick Ansible

deploy workflow

Much of the inspiration is from https://github.com/arvydas/blinkstick-python/wiki where some of the python snippets worked as-is and some did not. Some of the snippets are from Python 2.7 and wouldn't work on Python 3.X. I am using At least Python 3.8 for everything python related.

The reason for creating this repository was for me to have an easy way to operate 4 Blinkstick Nanos that I had bought for my raspberry pi kubernetes cluster. Having multiple nodes with separate Blinksticks, I wanted an abstraction layer on all four nodes that makes managing the configurations less monotonous. I have supplied several roles that can be executed against the blinksticks.

Install

Instructions

Get the following packages and materials on the machine executing Ansible. I am using 4 Blinkstick Nanos for this project, but any blinkstick should work.

Modify inventory/all.yaml with your own IP addresses and blinkstick serial numbers. Ensure that you have passwordless ssh setup to all nodes before proceeding with any Ansible configuration.

Example entry looks like...

node1: # name of the host. Arbitruary, it can be anything.
  ansible_host: 192.168.0.1 # IP address of the host
  serial: BS000001-3.0 # Run ansible-playbook main.yaml -t get-info to get this value for each node.

If you want to find the blinkstick serial numbers after mofifying the IP addresses, run the get-info tag. This saves you from logging into each node to find the serials.

Available Tags

tag description
get-info Collects all blinkstick information across all nodes. This includes serial numbers.
install Install all python packages defined in the python_packages list variable in main.yaml.
cpu-usage Monitors CPU usage using psutil and returns the appropriate color based on the percentage. This script runs indefinitely and checks every second.
internet-status When executed, a python script checks for internet access. If internet is up, color is green, if internet is down, color switches to purple.
aliases Used to create aliases that can be used directly in the command-line to execute the defined roles without knowing the full ansible-playbook command.
rave Executes a sequenece to perform a lightshow on all blinksticks.
off Turn all blinksticks off.
# Deploy everything !!
ansible-playbook main.yaml -t deploy
  # executes the following...
  # -t get-info
  # -t install
  # -t cpu-usage
  # -t internet-status
  # -t aliases

# Retrieve all Blinkstick information and serial number. Ensure the blinkstick is plugged into a USB slot before executing.
ansible-playbook main.yaml -t get-info

# Install all python library dependancies. Add or removes in the the python_packages list in main.yaml and re run this command to make the change on all nodes. 
ansible-playbook main.yaml -t install

# This roles uses the blinkstick python library to substitute the serial number from the ansible inventory and parse it as python. The script is then executed on the remote machines.
ansible-playbook main.yaml -t cpu-usage

# This roles uses the blinkstick python library to substitute the serial number from the ansible inventory and parse it as python. 
# A python script will continuously monitor the CPU percentage of the nodes and update the color accordingly.
ansible-playbook main.yaml -t internet-status

# Throw a party to celebrate getting everything installed.
ansible-playbook main.yaml -t rave

# Set the base color and brightness
ansible-playbook main.yaml -t base-config

# Or... pass the brightness and color inline using extra vars
ansible-playbook main.yaml -t base-config -e color=cyan -e brightness=50

# Turn all the Blinksticks off. (Useful for nighttime when you want to sleep. Use a cron to turn off automatically.)
ansible-playbook main.yaml -t off

# Creates aliases in either ~/.zprofile or ~/.bashrc, dynamically decided by the role.
ansible-playbook main.yaml -t aliases
  # The following aliases are added to either ~/.zprofile or ~/.bashrc....
  # blink-base
  # blink-day
  # blink-night
  # blink-rave
  # blink-off

Cron Scheduler

Add lines to the vars.crons section of cron.yaml to create cron jobs that execute locally on the machine running Ansible.

vars:
  crons:
    day:   { minute: '0', hour: '8',  weekday: '*',   disabled: 'no', tag: 'base-config', brightness: '70', color: 'green' }
    night: { minute: '0', hour: '21', weekday: '*',   disabled: 'no', tag: 'base-config', brightness: '20', color: 'cyan' }
    rave:  { minute: '0', hour: '17', weekday: 'FRI', disabled: 'no', tag: 'rave',        brightness: '80', color: 'cyan' }

To apply cron schedules from the root of the repository...

ansible-playbook cron.yaml

Troubleshooting

Blinkstick is having problems with python 3.9.2. I installed the latest version of Raspian (Debian Bullseye) and it ships with 3.9.2. On the other nodes, I was using <=3.8.2 so installed python 3.8.2 on Debian and got it to work using the steps below.

the issue appears when executing blinkstick using sudo blinkstick. This is essentially a workaround using a workaround because even with Python 3.8 there are problems which are outlined in this issue. Shown below is the output on each version followed by steps to get it working on your system using Python 3.8. I think even using Python 3.7 would just work out of the box without the extra steps...

Python 3.9 Output

sys.exit(main()) File "/usr/local/bin/blinkstick", line 220, in main sticks = blinkstick.find_all() File "/usr/local/lib/python3.9/dist-packages/blinkstick/blinkstick.py", line 1566, in find_all result.extend([BlinkStick(device=d)]) File "/usr/local/lib/python3.9/dist-packages/blinkstick/blinkstick.py", line 217, in __init__ self.bs_serial = self.get_serial() File "/usr/local/lib/python3.9/dist-packages/blinkstick/blinkstick.py", line 283, in get_serial return self._usb_get_string(self.device, 3) File "/usr/local/lib/python3.9/dist-packages/blinkstick/blinkstick.py", line 221, in _usb_get_string return usb.util.get_string(device, index, 1033) File "/usr/local/lib/python3.9/dist-packages/usb/util.py", line 260, in get_string return buf[2:buf[0]].tostring().decode('utf-16-le') IndexError: array index out of range">
[email protected]:~/python38-env $ python3 --version
Python 3.9.2

[email protected]:~/python38-env $ sudo blinkstick --blink green
Traceback (most recent call last):
  File "/usr/local/bin/blinkstick", line 331, in <module>
    sys.exit(main())
  File "/usr/local/bin/blinkstick", line 220, in main
    sticks = blinkstick.find_all()
  File "/usr/local/lib/python3.9/dist-packages/blinkstick/blinkstick.py", line 1566, in find_all
    result.extend([BlinkStick(device=d)])
  File "/usr/local/lib/python3.9/dist-packages/blinkstick/blinkstick.py", line 217, in __init__
    self.bs_serial = self.get_serial()
  File "/usr/local/lib/python3.9/dist-packages/blinkstick/blinkstick.py", line 283, in get_serial
    return self._usb_get_string(self.device, 3)
  File "/usr/local/lib/python3.9/dist-packages/blinkstick/blinkstick.py", line 221, in _usb_get_string
    return usb.util.get_string(device, index, 1033)
  File "/usr/local/lib/python3.9/dist-packages/usb/util.py", line 260, in get_string
    return buf[2:buf[0]].tostring().decode('utf-16-le')
IndexError: array index out of range

Python 3.8 Output

[email protected]:~/python38-env $ source ./bin/activate
(python38-env) [email protected]:~/python38-env $ python --version
Python 3.8.2

Change file /usr/local/bin/blinkstick interpretor from #!/usr/bin/env python to #!/home/pi/python38-env/bin/python3

(python38-env) [email protected]:~/python38-env $ head -5 /usr/local/bin/blinkstick
#!/home/pi/python38-env/bin/python3

from optparse import OptionParser, IndentedHelpFormatter, OptionGroup
from blinkstick import blinkstick

Run sudo blinkstick --blink green

(python38-env) [email protected]:~/python38-env $ sudo blinkstick --blink green
(python38-env) [email protected]:~/python38-env $

Install Blinkstick inside Python 3.8 virtual environment

Create Python 3.8 virtual environment

# Install python 3.8 on debian: https://linuxize.com/post/how-to-install-python-3-8-on-debian-10/

mkdir ~/python38-env && cd ~/python38-env
python3.8 -m venv .
source ./bin/activate

Perform Python 3.8 workaround steps

sudo apt-get install dos2unix
sudo pip install pyusb
sudo pip install blinkstick
sudo chmod +x /usr/local/bin/blinkstick
sudo dos2unix /usr/local/bin/blinkstick

Change python interpretor for blinktick module

Note: In my case I used python38-env as the target folder when creating the virtual env in the early steps.

By changing the interpreter in the module directly will allow Blinkstick to function when the virtual env is deactivated.

#!/usr/bin/env python to #!/home/pi/python38-env/bin/python3

Run sudo blinkstick and you should see the help menu.

Running sudo blinkstick --blink green works on the host.

Reference

Install Python 3.8 on Debian 10: https://linuxize.com/post/how-to-install-python-3-8-on-debian-10/ Install Python 3.8 on Debian 11: https://www.linuxcapable.com/how-to-install-python-3-8-on-debian-11-bullseye/ I used the Debian 10 tutorial for installing on bullseye but then found this version. Looks like it installs 3.8.12 instead of 3.8.2 Python 3.8 workaround reference: https://github.com/arvydas/blinkstick-python/issues/34

Owner
Greg Robinson
Delivery Consultant
Greg Robinson
A simple Python script for toggling Philips Hue Lights by clapping

LightsClap A simple Python script for toggling Philips Hue Lights by clapping Usage pip3 install -r requirements.txt python3 main.py and press the Ent

Flux Industries 2 Nov 16, 2021
Raspberry Pi Pico and LoRaWAN from CircuitPython

Raspberry Pi Pico and LoRaWAN from CircuitPython Enable LoRaWAN communications on your Raspberry Pi Pico or any RP2040-based board using CircuitPython

Alasdair Allan 15 Oct 08, 2022
Classes and functions for animated text and graphics on an LED display

LEDarcade A collection of classes and functions for animated text and graphics on an Adafruit LED Matrix.

datagod 31 Jan 04, 2023
Lego Mindstorms EV3 and Lego Spike Prime

Lego Mindstorms EV3 and Lego Spike Prime What is FLL? The FIRST LEGO League Challenge Robotics Tournament challenges students from 9 to 16 years old t

Danimar Campos da Costa 1 Nov 14, 2021
Implemented robot inverse kinematics.

robot_inverse_kinematics Project setup # put the package in the workspace $ cd ~/catkin_ws/ $ catkin_make $ source devel/setup.bash Description In thi

Jianming Han 2 Dec 08, 2022
A PYTHON Library for Controlling Motors using SOLO Motor Controllers with RASPBERRY PI, Linux, windows, and more!

A PYTHON Library for Controlling Motors using SOLO Motor Controllers with RASPBERRY PI, Linux, windows, and more!

SOLO Motor Controllers 3 Apr 29, 2022
a fork of the OnionShare software better optimized for lower spec lightweight machines and ARM processors

OnionShare-Optimized A fork of the OnionShare software better optimized for lower spec lightweight machines and ARM processors such as Raspberry Pi or

ALTPORT 4 Aug 05, 2021
PlatformIO development platform for GSM modules

PlatformIO development platform for GSM modules Supported Modules Quectel M66 OpenCPU Arduino - TODO other - in progress... Supported Boards Comet M66

Georgi Angelov 5 Aug 06, 2022
GUI wrapper designed for convenient service work with TI CC1352/CC2538/CC2652 based Zigbee sticks or gateways. Packed into single executable file

ZigStar GW Multi tool is GUI wrapper firtsly designed for convenient service work with Zig Star LAN GW, but now supports any TI CC1352/CC2538/CC2652 b

133 Jan 01, 2023
A python script to poll RPi GPIO pins and subscribe and publish their state via MQTT

MQTT-GPIO A python script to poll RPi GPIO pins and subscribe and publish their state via MQTT using TLS. This script is short and meant to be edited

23 Oct 12, 2021
A dashboard for Raspberry Pi to display environmental weather data, rain radar, weather forecast, etc. written in Python

Weather Clock for Raspberry PI This project is a dashboard for Raspberry Pi to display environmental weather data, rain radar, weather forecast, etc.

Markus Geiger 1 May 01, 2022
This Home Assistant custom component adds support for controlling Midea dehumidiferes on local network.

This is a custom component for Home assistant that adds support for Midea dehumidifier appliances via the local area network. midea-dehumidifier-lan H

Nenad Bogojevic 97 Jan 08, 2023
Run this code to blink your ThinkPad LED with a hidden mysterious Morse code! ;)

TMorse Run this code to blink your ThinkPad LED with a hidden mysterious Morse code! ;) Compatible with python3.9+. No third-party library is required

Mahyar 2 Jul 11, 2022
PBA: Pleco Breeding Assistant

A small monitor that reports the external, fishroom and water change parameters to have suitable water parameters and induce breeding. These two features already represent 50% of the "reproductive su

Mirko Mancin 1 Jan 19, 2022
What if home automation was homoiconic? Just transformations of data? No more YAML!

radiale what if home-automation was also homoiconic? The upper or proximal row contains three bones, to which Gegenbaur has applied the terms radiale,

Felix Barbalet 21 Mar 26, 2022
Connect a TeslaMate instance to Home Assistant, using MQTT

TeslaBuddy Connect a TeslaMate instance to Home Assistant, using MQTT. It allows basic control of your Tesla vehicle via Home Assistant (currently, ju

4 May 23, 2022
iot-dashboard: Fully integrated architecture platform with a dashboard for Logistics Monitoring, Internet of Things.

Fully integrated architecture platform with a dashboard for Logistics Monitoring, Internet of Things. Written in Python. Flask applicati

2 Jul 29, 2022
Code reimplementation of some papers published in SAIL-Lab

SAIL SAIL-Lab统一代码库 Motivation 创建这个项目的动机最早来源于实验室组内成员相互Debug代码的时候遇到的麻烦。

Jianwen Chen 8 Nov 15, 2022
Minimal and clean dashboard to visualize some stats of Pi-Hole with an E-Ink display attached to your Raspberry Pi

Clean Dashboard for Pi-Hole Minimal and clean dashboard to visualize some stats of Pi-Hole with an E-Ink display attached to your Raspberry Pi.

Alessio Santoru 104 Dec 14, 2022
A simple portable USB MIDI controller based on Raspberry-PI Pico and a 16-button keypad, written in Circuit Python

RPI-Pico-16-BTn-MIDI-Controller-using-CircuitPython A simple portable USB MIDI controller based on Raspberry-PI Pico, written in Circuit Python. Link

Rounak Dutta 3 Dec 04, 2022