ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

Related tags

Text Data & NLPalbert
Overview

ALBERT

***************New March 28, 2020 ***************

Add a colab tutorial to run fine-tuning for GLUE datasets.

***************New January 7, 2020 ***************

v2 TF-Hub models should be working now with TF 1.15, as we removed the native Einsum op from the graph. See updated TF-Hub links below.

***************New December 30, 2019 ***************

Chinese models are released. We would like to thank CLUE team for providing the training data.

Version 2 of ALBERT models is released.

In this version, we apply 'no dropout', 'additional training data' and 'long training time' strategies to all models. We train ALBERT-base for 10M steps and other models for 3M steps.

The result comparison to the v1 models is as followings:

Average SQuAD1.1 SQuAD2.0 MNLI SST-2 RACE
V2
ALBERT-base 82.3 90.2/83.2 82.1/79.3 84.6 92.9 66.8
ALBERT-large 85.7 91.8/85.2 84.9/81.8 86.5 94.9 75.2
ALBERT-xlarge 87.9 92.9/86.4 87.9/84.1 87.9 95.4 80.7
ALBERT-xxlarge 90.9 94.6/89.1 89.8/86.9 90.6 96.8 86.8
V1
ALBERT-base 80.1 89.3/82.3 80.0/77.1 81.6 90.3 64.0
ALBERT-large 82.4 90.6/83.9 82.3/79.4 83.5 91.7 68.5
ALBERT-xlarge 85.5 92.5/86.1 86.1/83.1 86.4 92.4 74.8
ALBERT-xxlarge 91.0 94.8/89.3 90.2/87.4 90.8 96.9 86.5

The comparison shows that for ALBERT-base, ALBERT-large, and ALBERT-xlarge, v2 is much better than v1, indicating the importance of applying the above three strategies. On average, ALBERT-xxlarge is slightly worse than the v1, because of the following two reasons: 1) Training additional 1.5 M steps (the only difference between these two models is training for 1.5M steps and 3M steps) did not lead to significant performance improvement. 2) For v1, we did a little bit hyperparameter search among the parameters sets given by BERT, Roberta, and XLnet. For v2, we simply adopt the parameters from v1 except for RACE, where we use a learning rate of 1e-5 and 0 ALBERT DR (dropout rate for ALBERT in finetuning). The original (v1) RACE hyperparameter will cause model divergence for v2 models. Given that the downstream tasks are sensitive to the fine-tuning hyperparameters, we should be careful about so called slight improvements.

ALBERT is "A Lite" version of BERT, a popular unsupervised language representation learning algorithm. ALBERT uses parameter-reduction techniques that allow for large-scale configurations, overcome previous memory limitations, and achieve better behavior with respect to model degradation.

For a technical description of the algorithm, see our paper:

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut

Release Notes

  • Initial release: 10/9/2019

Results

Performance of ALBERT on GLUE benchmark results using a single-model setup on dev:

Models MNLI QNLI QQP RTE SST MRPC CoLA STS
BERT-large 86.6 92.3 91.3 70.4 93.2 88.0 60.6 90.0
XLNet-large 89.8 93.9 91.8 83.8 95.6 89.2 63.6 91.8
RoBERTa-large 90.2 94.7 92.2 86.6 96.4 90.9 68.0 92.4
ALBERT (1M) 90.4 95.2 92.0 88.1 96.8 90.2 68.7 92.7
ALBERT (1.5M) 90.8 95.3 92.2 89.2 96.9 90.9 71.4 93.0

Performance of ALBERT-xxl on SQuaD and RACE benchmarks using a single-model setup:

Models SQuAD1.1 dev SQuAD2.0 dev SQuAD2.0 test RACE test (Middle/High)
BERT-large 90.9/84.1 81.8/79.0 89.1/86.3 72.0 (76.6/70.1)
XLNet 94.5/89.0 88.8/86.1 89.1/86.3 81.8 (85.5/80.2)
RoBERTa 94.6/88.9 89.4/86.5 89.8/86.8 83.2 (86.5/81.3)
UPM - - 89.9/87.2 -
XLNet + SG-Net Verifier++ - - 90.1/87.2 -
ALBERT (1M) 94.8/89.2 89.9/87.2 - 86.0 (88.2/85.1)
ALBERT (1.5M) 94.8/89.3 90.2/87.4 90.9/88.1 86.5 (89.0/85.5)

Pre-trained Models

TF-Hub modules are available:

Example usage of the TF-Hub module in code:

tags = set()
if is_training:
  tags.add("train")
albert_module = hub.Module("https://tfhub.dev/google/albert_base/1", tags=tags,
                           trainable=True)
albert_inputs = dict(
    input_ids=input_ids,
    input_mask=input_mask,
    segment_ids=segment_ids)
albert_outputs = albert_module(
    inputs=albert_inputs,
    signature="tokens",
    as_dict=True)

# If you want to use the token-level output, use
# albert_outputs["sequence_output"] instead.
output_layer = albert_outputs["pooled_output"]

Most of the fine-tuning scripts in this repository support TF-hub modules via the --albert_hub_module_handle flag.

Pre-training Instructions

To pretrain ALBERT, use run_pretraining.py:

pip install -r albert/requirements.txt
python -m albert.run_pretraining \
    --input_file=... \
    --output_dir=... \
    --init_checkpoint=... \
    --albert_config_file=... \
    --do_train \
    --do_eval \
    --train_batch_size=4096 \
    --eval_batch_size=64 \
    --max_seq_length=512 \
    --max_predictions_per_seq=20 \
    --optimizer='lamb' \
    --learning_rate=.00176 \
    --num_train_steps=125000 \
    --num_warmup_steps=3125 \
    --save_checkpoints_steps=5000

Fine-tuning on GLUE

To fine-tune and evaluate a pretrained ALBERT on GLUE, please see the convenience script run_glue.sh.

Lower-level use cases may want to use the run_classifier.py script directly. The run_classifier.py script is used both for fine-tuning and evaluation of ALBERT on individual GLUE benchmark tasks, such as MNLI:

pip install -r albert/requirements.txt
python -m albert.run_classifier \
  --data_dir=... \
  --output_dir=... \
  --init_checkpoint=... \
  --albert_config_file=... \
  --spm_model_file=... \
  --do_train \
  --do_eval \
  --do_predict \
  --do_lower_case \
  --max_seq_length=128 \
  --optimizer=adamw \
  --task_name=MNLI \
  --warmup_step=1000 \
  --learning_rate=3e-5 \
  --train_step=10000 \
  --save_checkpoints_steps=100 \
  --train_batch_size=128

Good default flag values for each GLUE task can be found in run_glue.sh.

You can fine-tune the model starting from TF-Hub modules instead of raw checkpoints by setting e.g. --albert_hub_module_handle=https://tfhub.dev/google/albert_base/1 instead of --init_checkpoint.

You can find the spm_model_file in the tar files or under the assets folder of the tf-hub module. The name of the model file is "30k-clean.model".

After evaluation, the script should report some output like this:

***** Eval results *****
  global_step = ...
  loss = ...
  masked_lm_accuracy = ...
  masked_lm_loss = ...
  sentence_order_accuracy = ...
  sentence_order_loss = ...

Fine-tuning on SQuAD

To fine-tune and evaluate a pretrained model on SQuAD v1, use the run_squad_v1.py script:

pip install -r albert/requirements.txt
python -m albert.run_squad_v1 \
  --albert_config_file=... \
  --output_dir=... \
  --train_file=... \
  --predict_file=... \
  --train_feature_file=... \
  --predict_feature_file=... \
  --predict_feature_left_file=... \
  --init_checkpoint=... \
  --spm_model_file=... \
  --do_lower_case \
  --max_seq_length=384 \
  --doc_stride=128 \
  --max_query_length=64 \
  --do_train=true \
  --do_predict=true \
  --train_batch_size=48 \
  --predict_batch_size=8 \
  --learning_rate=5e-5 \
  --num_train_epochs=2.0 \
  --warmup_proportion=.1 \
  --save_checkpoints_steps=5000 \
  --n_best_size=20 \
  --max_answer_length=30

You can fine-tune the model starting from TF-Hub modules instead of raw checkpoints by setting e.g. --albert_hub_module_handle=https://tfhub.dev/google/albert_base/1 instead of --init_checkpoint.

For SQuAD v2, use the run_squad_v2.py script:

pip install -r albert/requirements.txt
python -m albert.run_squad_v2 \
  --albert_config_file=... \
  --output_dir=... \
  --train_file=... \
  --predict_file=... \
  --train_feature_file=... \
  --predict_feature_file=... \
  --predict_feature_left_file=... \
  --init_checkpoint=... \
  --spm_model_file=... \
  --do_lower_case \
  --max_seq_length=384 \
  --doc_stride=128 \
  --max_query_length=64 \
  --do_train \
  --do_predict \
  --train_batch_size=48 \
  --predict_batch_size=8 \
  --learning_rate=5e-5 \
  --num_train_epochs=2.0 \
  --warmup_proportion=.1 \
  --save_checkpoints_steps=5000 \
  --n_best_size=20 \
  --max_answer_length=30

You can fine-tune the model starting from TF-Hub modules instead of raw checkpoints by setting e.g. --albert_hub_module_handle=https://tfhub.dev/google/albert_base/1 instead of --init_checkpoint.

Fine-tuning on RACE

For RACE, use the run_race.py script:

pip install -r albert/requirements.txt
python -m albert.run_race \
  --albert_config_file=... \
  --output_dir=... \
  --train_file=... \
  --eval_file=... \
  --data_dir=...\
  --init_checkpoint=... \
  --spm_model_file=... \
  --max_seq_length=512 \
  --max_qa_length=128 \
  --do_train \
  --do_eval \
  --train_batch_size=32 \
  --eval_batch_size=8 \
  --learning_rate=1e-5 \
  --train_step=12000 \
  --warmup_step=1000 \
  --save_checkpoints_steps=100

You can fine-tune the model starting from TF-Hub modules instead of raw checkpoints by setting e.g. --albert_hub_module_handle=https://tfhub.dev/google/albert_base/1 instead of --init_checkpoint.

SentencePiece

Command for generating the sentence piece vocabulary:

spm_train \
--input all.txt --model_prefix=30k-clean --vocab_size=30000 --logtostderr
--pad_id=0 --unk_id=1 --eos_id=-1 --bos_id=-1
--control_symbols=[CLS],[SEP],[MASK]
--user_defined_symbols="(,),\",-,.,–,£,€"
--shuffle_input_sentence=true --input_sentence_size=10000000
--character_coverage=0.99995 --model_type=unigram
Owner
Google Research
Google Research
Sequence model architectures from scratch in PyTorch

This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The train

Brando Koch 11 Mar 28, 2022
Estimation of the CEFR complexity score of a given word, sentence or text.

NLP-Swedish … allows to estimate CEFR (Common European Framework of References) complexity score of a given word, sentence or text. CEFR scores come f

3 Apr 30, 2022
An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Zhiling Zhang 5 Oct 21, 2022
Some embedding layer implementation using ivy library

ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to

Ishtiaq Hussain 2 Feb 10, 2022
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models

Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t

22 Dec 14, 2022
AI_Assistant - This is a Python based Voice Assistant.

This is a Python based Voice Assistant. This was programmed to increase my understanding of python and also how the in-general Voice Assistants work.

1 Jan 06, 2022
⛵️The official PyTorch implementation for "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing" (EMNLP 2020).

BERT-of-Theseus Code for paper "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing". BERT-of-Theseus is a new compressed BERT by progre

Kevin Canwen Xu 284 Nov 25, 2022
VampiresVsWerewolves - Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition

VampiresVsWerewolves Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition. Our Algorithm finish

Shawn 1 Jan 21, 2022
Code for the project carried out fulfilling the course requirements for Fall 2021 NLP at NYU

Introduction Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization,

Sai Himal Allu 1 Apr 25, 2022
Simple, hackable offline speech to text - using the VOSK-API.

Simple, hackable offline speech to text - using the VOSK-API.

Campbell Barton 844 Jan 07, 2023
A Japanese tokenizer based on recurrent neural networks

Nagisa is a python module for Japanese word segmentation/POS-tagging. It is designed to be a simple and easy-to-use tool. This tool has the following

325 Jan 05, 2023
NLP - Machine learning

Flipkart-product-reviews NLP - Machine learning About Product reviews is an essential part of an online store like Flipkart’s branding and marketing.

Harshith VH 1 Oct 29, 2021
This code is the implementation of Text Emotion Recognition (TER) with linguistic features

APSIPA-TER This code is the implementation of Text Emotion Recognition (TER) with linguistic features. The network model is BERT with a pretrained mod

kenro515 1 Feb 08, 2022
The PyTorch based implementation of continuous integrate-and-fire (CIF) module.

CIF-PyTorch This is a PyTorch based implementation of continuous integrate-and-fire (CIF) module for end-to-end (E2E) automatic speech recognition (AS

Minglun Han 24 Dec 29, 2022
自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器

ja-timex 自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器 概要 ja-timex は、現代日本語で書かれた自然文に含まれる時間情報表現を抽出しTIMEX3と呼ばれるアノテーション仕様に変換することで、プログラムが利用できるような形に規格化するルールベースの解析器です。

Yuki Okuda 116 Nov 09, 2022
Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech

epub2audiobook Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech Input examples qual a pasta do seu

7 Aug 25, 2022
Production First and Production Ready End-to-End Keyword Spotting Toolkit

Production First and Production Ready End-to-End Keyword Spotting Toolkit

223 Jan 02, 2023
Edge-Augmented Graph Transformer

Edge-augmented Graph Transformer Introduction This is the official implementation of the Edge-augmented Graph Transformer (EGT) as described in https:

Md Shamim Hussain 21 Dec 14, 2022
String Gen + Word Checker

Creates random strings and checks if any of them are a real words. Mostly a waste of time ngl but it is cool to see it work and the fact that it can generate a real random word within10sec

1 Jan 06, 2022
An official repository for tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a University of Edinburgh master's course.

PMR computer tutorials on HMMs (2021-2022) This is a repository for computer tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a Univer

Vaidotas Šimkus 10 Dec 06, 2022