UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

Related tags

Deep LearningUmlsBERT
Overview

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

General info

This is the code that was used of the paper : UmlsBERT: Augmenting Contextual Embeddings with a Clinical Metathesaurus (NAACL 2021).

In this work, we introduced UmlsBERT, a contextual embedding model capable of integrating domain knowledge during pre-training. It was trained on biomedical corpora and uses the Unified Medical Language System (UMLS) clinical metathesaurus in two ways:

  • We proposed a new multi-label loss function for the pre-training of the Masked Language Modelling (Masked LM) task of UmlsBERT that considers the connections between medical words using the CUI attribute of UMLS.

  • We introduced a semantic group embedding that enriches the input embeddings process of UmlsBERT by forcing the model to take into consideration the association of the words that are part of the same semantic group.

Technologies

This project was created with python 3.7 and PyTorch 0.4.1 and it is based on the transformer github repo of the huggingface team

Setup

We recommend installing and running the code from within a virtual environment.

Creating a Conda Virtual Environment

First, download Anaconda from this link

Second, create a conda environment with python 3.7.

$ conda create -n umlsbert python=3.7

Upon restarting your terminal session, you can activate the conda environment:

$ conda activate umlsbert 

Install the required python packages

In the project root directory, run the following to install the required packages.

pip3 install -r requirements.txt

Install from a VM

If you start a VM, please run the following command sequentially before install the required python packages. The following code example is for a vast.ai Virtual Machine.

apt-get update
apt install git-all
apt install python3-pip
apt-get install jupyter

Dowload pre-trained UmlsBERT model

In order to use pre-trained UmlsBERT model for the word embeddings (or the semantic embeddings), you need to dowload it into the folder examples/checkpoint/ from the link:

 wget -O umlsbert.tar.xz https://www.dropbox.com/s/kziiuyhv9ile00s/umlsbert.tar.xz?dl=0

into the folder examples/checkpoint/ and unzip it with the following command:

tar -xvf umlsbert.tar.xz

Reproduce UmlsBERT

Pretraining

  • The UmlsBERT was pretrained on the MIMIC data. Unfortunately, we cannot provide the text of the MIMIC III dataset as training course is mandatory in order to access the particular dataset.

  • The MIMIC III dataset can be downloaded from the following link

  • The pretraining an UmlsBERT model depends on data from NLTK so you'll have to download them. Run the Python interpreter (python3) and type the commands:

>>> import nltk
>>> nltk.download('punkt')
  • After downloading the NOTEEVENTS table in the examples/language-modeling/ folder, run the following python code that we provide in the examples/language-modeling/ folder to create the mimic_string.txt on the folder examples/language-modeling/:
python3 mimic.py

you can pre-trained a UmlsBERT model by running the following command on the examples/language-modeling/:

Example for pretraining Bio_clinicalBert:

python3 run_language_modeling.py --output_dir ./models/clinicalBert-v1  --model_name_or_path  emilyalsentzer/Bio_ClinicalBERT  --mlm     --do_train     --learning_rate 5e-5     --max_steps 150000   --block_size 128   --save_steps 1000     --per_gpu_train_batch_size 32     --seed 42     --line_by_line      --train_data_file mimic_string.txt  --umls --config_name  config.json --med_document ./voc/vocab_updated.txt

Downstream Tasks

MedNLi task

  • MedNLI is available through the MIMIC-III derived data repository. Any individual certified to access MIMIC-III can access MedNLI through the following link

    • Converting into an appropriate format: After downloading and unzipping the MedNLi dataset (mednli-a-natural-language-inference-dataset-for-the-clinical-domain-1.0.0.zip) on the folder examples/text-classification/dataset/mednli/, run the following python code in the examples/text-classification/dataset/mednli/ folder that we provide in order to convert the dataset into a format that is appropriate for the UmlsBERT model
python3  mednli.py
  • This python code will create the files: train.tsv,dev_matched.tsv and test_matched.tsv in the text-classification/dataset/mednli/mednli folder
  • We provide an example-notebook under the folder experiements/:

or directly run UmlsBert on the text-classification/ folder:

python3 run_glue.py --output_dir ./models/medicalBert-v1 --model_name_or_path  ../checkpoint/umlsbert   --data_dir  dataset/mednli/mednli  --num_train_epochs 3 --per_device_train_batch_size 32  --learning_rate 1e-4   --do_train --do_eval  --do_predict  --task_name mnli --umls --med_document ./voc/vocab_updated.txt

NER task

  • Due to the copyright issue of i2b2 datasets, in order to download them follow the link.

    • Converting into an appropriate format: Since we wanted to directly compare with the Bio_clinical_Bert we used their code in order to convert the i2b2 dataset to a format which is appropriate for the BERT architecture which can be found in the following link: link

    We provide the code for converting the i2b2 dataset with the following instruction for each dataset:

  • i2b2 2006:

    • In the folder token-classification/dataset/i2b2_preprocessing/i2b2_2006_deid unzip the deid_surrogate_test_all_groundtruth_version2.zip and deid_surrogate_train_all_version2.zip
    • run the create.sh scrip with the command ./create.sh
    • The script will create the files: label.txt, dev.txt, test.txt, train.txt in the token-classification/dataset/NER/2006 folder
  • i2b2 2010:

    • In the folder token-classification/dataset/i2b2_preprocessing/i2b2_2010_relations unzip the test_data.tar.gz, concept_assertion_relation_training_data.tar.gz and reference_standard_for_test_data.tar.gz
    • Run the jupyter notebook Reformat.ipynb
    • The notebook will create the files: label.txt, dev.txt, test.txt, train.txt in the token-classification/dataset/NER/2010 folder
  • i2b2 2012:

    • In the folder token-classification/dataset/i2b2_preprocessing/i2b2_2012 unzip the 2012-07-15.original-annotation.release.tar.gz and 2012-08-08.test-data.event-timex-groundtruth.tar.gz
    • Run the jupyter notebook Reformat.ipynb
    • The notebook will create the files: label.txt, dev.txt, test.txt, train.txt in the token-classification/dataset/NER/2012 folder
  • i2b2 2014:

    • In the folder token-classification/dataset/i2b2_preprocessing/i2b2_2014_deid_hf_risk unzip the 2014_training-PHI-Gold-Set1.tar.gz,training-PHI-Gold-Set2.tar.gz and testing-PHI-Gold-fixed.tar.gz
    • Run the jupyter notebook Reformat.ipynb
    • The notebook will create the files: label.txt, dev.txt, test.txt, train.txt in the token-classification/dataset/NER/2014 folder
  • We provide an example-notebook under the folder experiements/:

or directly run UmlsBert on the token-classification/ folder:

python3 run_ner.py --output_dir ./models/medicalBert-v1 --model_name_or_path  ../checkpoint/umlsbert    --labels dataset/NER/2006/label.txt --data_dir  dataset/NER/2006 --do_train --num_train_epochs 20 --per_device_train_batch_size 32  --learning_rate 1e-4  --do_predict --do_eval --umls --med_document ./voc/vocab_updated.txt

If you find our work useful, can cite our paper using:

@misc{michalopoulos2020umlsbert,
      title={UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus}, 
      author={George Michalopoulos and Yuanxin Wang and Hussam Kaka and Helen Chen and Alex Wong},
      year={2020},
      eprint={2010.10391},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
Learning to See by Looking at Noise

Learning to See by Looking at Noise This is the official implementation of Learning to See by Looking at Noise. In this work, we investigate a suite o

Manel Baradad Jurjo 82 Dec 24, 2022
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
Fine-tune pretrained Convolutional Neural Networks with PyTorch

Fine-tune pretrained Convolutional Neural Networks with PyTorch. Features Gives access to the most popular CNN architectures pretrained on ImageNet. A

Alex Parinov 694 Nov 23, 2022
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

967 Jan 04, 2023
The source code and dataset for the RecGURU paper (WSDM 2022)

RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross

Chenglin Li 17 Jan 07, 2023
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022