PyTorch impelementations of BERT-based Spelling Error Correction Models.

Overview

BertBasedCorrectionModels

基于BERT的文本纠错模型,使用PyTorch实现

数据准备

  1. http://nlp.ee.ncu.edu.tw/resource/csc.html下载SIGHAN数据集
  2. 解压上述数据集并将文件夹中所有 ''.sgml'' 文件复制至 datasets/csc/ 目录
  3. 复制 ''SIGHAN15_CSC_TestInput.txt'' 和 ''SIGHAN15_CSC_TestTruth.txt'' 至 datasets/csc/ 目录
  4. 下载 https://github.com/wdimmy/Automatic-Corpus-Generation/blob/master/corpus/train.sgml 至 datasets/csc 目录
  5. 请确保以下文件在 datasets/csc 中
    train.sgml
    B1_training.sgml
    C1_training.sgml  
    SIGHAN15_CSC_A2_Training.sgml  
    SIGHAN15_CSC_B2_Training.sgml  
    SIGHAN15_CSC_TestInput.txt
    SIGHAN15_CSC_TestTruth.txt
    

环境准备

  1. 使用已有编码环境或通过 conda create -n python=3.7 创建一个新环境(推荐)
  2. 克隆本项目并进入项目根目录
  3. 安装所需依赖 pip install -r requirements.txt
  4. 如果出现报错 GLIBC 版本过低的问题(GLIBC 的版本更迭容易出事故,不推荐更新),openCC 改为安装较低版本(例如 1.1.0)
  5. 在当前终端将此目录加入环境变量 export PYTHONPATH=.

训练

运行以下命令以训练模型,首次运行会自动处理数据。

python tools/train_csc.py --config_file csc/train_SoftMaskedBert.yml

可选择不同配置文件以训练不同模型,目前支持以下配置文件:

  • train_bert4csc.yml
  • train_macbert4csc.yml
  • train_SoftMaskedBert.yml

如有其他需求,可根据需要自行调整配置文件中的参数。

实验结果

SoftMaskedBert

component sentence level acc p r f
Detection 0.5045 0.8252 0.8416 0.8333
Correction 0.8055 0.9395 0.8748 0.9060

Bert类

char level

MODEL p r f
BERT4CSC 0.9269 0.8651 0.8949
MACBERT4CSC 0.9380 0.8736 0.9047

sentence level

model acc p r f
BERT4CSC 0.7990 0.8482 0.7214 0.7797
MACBERT4CSC 0.8027 0.8525 0.7251 0.7836

推理

方法一,使用inference脚本:

python inference.py --ckpt_fn epoch=0-val_loss=0.03.ckpt --texts "我今天很高心"
# 或给出line by line格式的文本地址
python inference.py --ckpt_fn epoch=0-val_loss=0.03.ckpt --text_file /ml/data/text.txt

其中/ml/data/text.txt文本如下:

我今天很高心
你这个辣鸡模型只能做错别字纠正

方法二,直接调用

texts = ['今天我很高心', '测试', '继续测试']
model.predict(texts)

方法三、导出bert权重,使用transformers或pycorrector调用

  1. 使用convert_to_pure_state_dict.py导出bert权重
  2. 后续步骤参考https://github.com/shibing624/pycorrector/blob/master/pycorrector/macbert/README.md

引用

如果你在研究中使用了本项目,请按如下格式引用:

@article{cai2020pre,
  title={BERT Based Correction Models},
  author={Cai, Heng and Chen, Dian},
  journal={GitHub. Note: https://github.com/gitabtion/BertBasedCorrectionModels},
  year={2020}
}

License

本源代码的授权协议为 Apache License 2.0,可免费用做商业用途。请在产品说明中附加本项目的链接和授权协议。本项目受版权法保护,侵权必究。

更新记录

20210618

  1. 修复数据处理的编码报错问题

20210518

  1. 将BERT4CSC检错任务改为使用FocalLoss
  2. 更新修改后的模型实验结果
  3. 降低数据处理时保留原文的概率

20210517

  1. 对BERT4CSC模型新增检错任务
  2. 新增基于LineByLine文件的inference

References

  1. Spelling Error Correction with Soft-Masked BERT
  2. http://ir.itc.ntnu.edu.tw/lre/sighan8csc.html
  3. https://github.com/wdimmy/Automatic-Corpus-Generation
  4. transformers
  5. https://github.com/sunnyqiny/Confusionset-guided-Pointer-Networks-for-Chinese-Spelling-Check
  6. SoftMaskedBert-PyTorch
  7. Deep-Learning-Project-Template
  8. https://github.com/lonePatient/TorchBlocks
  9. https://github.com/shibing624/pycorrector
Owner
Heng Cai
NLPer
Heng Cai
A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

Ian 1 Jan 15, 2022
Concept Modeling: Topic Modeling on Images and Text

Concept is a technique that leverages CLIP and BERTopic-based techniques to perform Concept Modeling on images.

Maarten Grootendorst 120 Dec 27, 2022
Sentello is python script that simulates the anti-evasion and anti-analysis techniques used by malware.

sentello Sentello is a python script that simulates the anti-evasion and anti-analysis techniques used by malware. For techniques that are difficult t

Malwation 62 Oct 02, 2022
Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

KR-BERT-SimCSE Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT. Training Unsupervised python train_unsupervised.py --mi

Jeong Ukjae 27 Dec 12, 2022
🏖 Easy training and deployment of seq2seq models.

Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear

Axel Springer Ideas Engineering GmbH 231 Nov 18, 2022
Search msDS-AllowedToActOnBehalfOfOtherIdentity

前言 现在进行RBCD的攻击手段主要是搜索mS-DS-CreatorSID,如果机器的创建者是我们可控的话,那就可以修改对应机器的msDS-AllowedToActOnBehalfOfOtherIdentity,利用工具SharpAllowedToAct-Modify 那我们索性也试试搜索所有计算机

Jumbo 26 Dec 05, 2022
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema

27 Dec 22, 2022
PortaSpeech - PyTorch Implementation

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 276 Dec 26, 2022
Almost State-of-the-art Text Generation library

Ps: we are adding transformer model soon Text Gen 🐐 Almost State-of-the-art Text Generation library Text gen is a python library that allow you build

Emeka boris ama 63 Jun 24, 2022
Generate vector graphics from a textual caption

VectorAscent: Generate vector graphics from a textual description Example "a painting of an evergreen tree" python text_to_painting.py --prompt "a pai

Ajay Jain 97 Dec 15, 2022
HAN2HAN : Hangul Font Generation

HAN2HAN : Hangul Font Generation

Changwoo Lee 36 Dec 28, 2022
CYGNUS, the Cynical AI, combines snarky responses with uncanny aggression.

New & (hopefully) Improved CYGNUS with several API updates, user updates, and online/offline operations added!!!

Simran Farrukh 0 Mar 28, 2022
Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Token Shift GPT Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwar

Phil Wang 32 Oct 14, 2022
Utilizing RBERT model for KLUE Relation Extraction task

RBERT for Relation Extraction task for KLUE Project Description Relation Extraction task is one of the task of Korean Language Understanding Evaluatio

snoop2head 14 Nov 15, 2022
This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

João Assalim 1 Oct 10, 2022
Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
Dust model dichotomous performance analysis

Dust-model-dichotomous-performance-analysis Using a collated dataset of 90,000 dust point source observations from 9 drylands studies from around the

1 Dec 17, 2021
CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985

CCF BDCI 2020 房产行业聊天问答匹配 A榜47/2985 赛题描述详见:https://www.datafountain.cn/competitions/474 文件说明 data: 存放训练数据和测试数据以及预处理代码 model_bert.py: 网络模型结构定义 adv_train

shuo 40 Sep 28, 2022
QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022