This code provides various models combining dilated convolutions with residual networks

Related tags

Deep Learningdrn
Overview

Overview

This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less parameters than ResNet on image classification and semantic segmentation.

If you find this code useful for your publications, please consider citing

@inproceedings{Yu2017,
    title     = {Dilated Residual Networks},
    author    = {Fisher Yu and Vladlen Koltun and Thomas Funkhouser},
    booktitle = {Computer Vision and Pattern Recognition (CVPR)},
    year      = {2017},
}

@inproceedings{Yu2016,
    title     = {Multi-scale context aggregation by dilated convolutions},
    author    = {Yu, Fisher and Koltun, Vladlen},
    booktitle = {International Conference on Learning Representations (ICLR)},
    year      = {2016}
}

Code Highlights

  • The pretrained model can be loaded using Pytorch model zoo api. Example here.
  • Pytorch based image classification and semantic image segmentation.
  • BatchNorm synchronization across multipe GPUs.
  • High-resolution class activiation maps for state-of-the-art weakly supervised object localization.
  • DRN-D-105 gets 76.3% mIoU on Cityscapes with only fine training annotation and no context module.

Image Classification

Image classification is meant to be a controlled study to understand the role of high resolution feature maps in image classification and the class activations rising from it. Based on the investigation, we are able to design more efficient networks for learning high-resolution image representation. They have practical usage in semantic image segmentation, as detailed in image segmentation section.

Models

Comparison of classification error rate on ImageNet validation set and numbers of parameters. It is evaluated on single center 224x224 crop from resized images whose shorter side is 256-pixel long.

Name Top-1 Top-5 Params
ResNet-18 30.4% 10.8% 11.7M
DRN-A-18 28.0% 9.5% 11.7M
DRN-D-22 25.8% 8.2% 16.4M
DRN-C-26 24.9% 7.6% 21.1M
ResNet-34 27.7% 8.7% 21.8M
DRN-A-34 24.8% 7.5% 21.8M
DRN-D-38 23.8% 6.9% 26.5M
DRN-C-42 22.9% 6.6% 31.2M
ResNet-50 24.0% 7.0% 25.6M
DRN-A-50 22.9% 6.6% 25.6M
DRN-D-54 21.2% 5.9% 35.8M
DRN-C-58 21.7% 6.0% 41.6M
ResNet-101 22.4% 6.2% 44.5M
DRN-D-105 20.6% 5.5% 54.8M
ResNet-152 22.2% 6.2% 60.2M

The figure below groups the parameter and error rate comparison based on netwok structures.

comparison

Training and Testing

The code is written in Python using Pytorch. I started with code in torchvision. Please check their license as well if copyright is your concern. Software dependency:

  • Python 3
  • Pillow
  • pytorch
  • torchvision

Note If you want to train your own semantic segmentation model, make sure your Pytorch version is greater than 0.2.0 or includes commit 78020a.

Go to this page to prepare ImageNet 1K data.

To test a model on ImageNet validation set:

python3 classify.py test --arch drn_c_26 -j 4 
   
     --pretrained

   

To train a new model:

python3 classify.py train --arch drn_c_26 -j 8 
   
     --epochs 120

   

Besides drn_c_26, we also provide drn_c_42 and drn_c_58. They are in DRN-C family as described in Dilated Residual Networks. DRN-D models are simplified versions of DRN-C. Their code names are drn_d_22, drn_d_38, drn_d_54, and drn_d_105.

Semantic Image Segmentataion

Models

Comparison of mIoU on Cityscapes and numbers of parameters.

Name mIoU Params
DRN-A-50 67.3% 25.6M
DRN-C-26 68.0% 21.1M
DRN-C-42 70.9% 31.2M
DRN-D-22 68.0% 16.4M
DRN-D-38 71.4% 26.5M
DRN-D-105* 75.6% 54.8M

*trained with poly learning rate, random scaling and rotations.

DRN-D-105 gets 76.3% mIoU on Cityscapes testing set with multi-scale testing, poly learning rate and data augmentation with random rotation and scaling in training. Full results are here.

Prepare Data

The segmentation image data folder is supposed to contain following image lists with names below:

  • train_images.txt
  • train_labels.txt
  • val_images.txt
  • val_labels.txt
  • test_images.txt

The code will also look for info.json in the folder. It contains mean and std of the training images. For example, below is info.json used for training on Cityscapes.

{
    "mean": [
        0.290101,
        0.328081,
        0.286964
    ],
    "std": [
        0.182954,
        0.186566,
        0.184475
    ]
}

Each line in the list is a path to an input image or its label map relative to the segmentation folder.

For example, if the data folder is "/foo/bar" and train_images.txt in it contains

leftImg8bit/train/aachen/aachen_000000_000019_leftImg8bit.png
leftImg8bit/train/aachen/aachen_000001_000019_leftImg8bit.png

and train_labels.txt contrains

gtFine/train/aachen/aachen_000000_000019_gtFine_trainIds.png
gtFine/train/aachen/aachen_000001_000019_gtFine_trainIds.png

Then the first image path is expected at

/foo/bar/leftImg8bit/train/aachen/aachen_000000_000019_leftImg8bit.png

and its label map is at

/foo/bar/gtFine/train/aachen/aachen_000000_000019_gtFine_trainIds.png

In training phase, both train_* and val_* are assumed to be in the data folder. In validation phase, only val_images.txt and val_labels.txt are needed. In testing phase, when there are no available labels, only test_images.txt is needed. segment.py has a command line option --phase and the corresponding acceptable arguments are train, val, and test.

To set up Cityscapes data, please check this document.

Optimization Setup

The current segmentation models are trained on basic data augmentation (random crops + flips). The learning rate is changed by steps, where it is decreased by a factor of 10 at each step.

Training

To train a new model, use

python3 segment.py train -d 
   
     -c 
    
      -s 896 \
    --arch drn_d_22 --batch-size 32 --epochs 250 --lr 0.01 --momentum 0.9 \
    --step 100

    
   

category_number is the number of categories in segmentation. It is 19 for Cityscapes and 11 for Camvid. The actual label maps should contain values in the range of [0, category_number). Invalid pixels can be labeled as 255 and they will be ignored in training and evaluation. Depends on the batch size, lr and momentum can be 0.01/0.9 or 0.001/0.99.

If you want to train drn_d_105 to achieve best results on cityscapes dataset, you need to turn on data augmentation and use poly learning rate:

python3 segment.py train -d 
   
     -c 19 -s 840 --arch drn_d_105 --random-scale 2 --random-rotate 10 --batch-size 16 --epochs 500 --lr 0.01 --momentum 0.9 -j 16 --lr-mode poly --bn-sync

   

Note:

  • If you use 8 GPUs for 16 crops per batch, the memory for each GPU is more than 12GB. If you don't have enough GPU memory, you can try smaller batch size or crop size. Smaller crop size usually hurts the performance more.
  • Batch normalization synchronization across multiple GPUs is necessary to train very deep convolutional networks for semantic segmentation. We provide an implementation as a pytorch extenstion in lib/. However, it is not for the faint-hearted to build from scratch, although an Makefile is provided. So a built binary library for 64-bit Ubuntu is provided. It is tested on Ubuntu 16.04. Also remember to add lib/ to your PYTHONPATH.

Testing

Evaluate models on testing set or any images without ground truth labels using our related pretrained model:

python3 segment.py test -d 
   
     -c 
    
      --arch drn_d_22 \
    --pretrained 
     
       --phase test --batch-size 1

     
    
   

You can download the pretrained DRN models on Cityscapes here: http://go.yf.io/drn-cityscapes-models.

If you want to evaluate a checkpoint from your own training, use --resume instead of --pretrained:

python3 segment.py test -d 
   
     -c 
    
      --arch drn_d_22 \
    --resume 
     
       --phase test --batch-size 1

     
    
   

You can also turn on multi-scale testing for better results by adding --ms:

python3 segment.py test -d 
   
     -c 
    
      --arch drn_d_105 \
    --resume 
     
       --phase val --batch-size 1 --ms

     
    
   
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
This repo is for segmentation of T2 hyp regions in gliomas.

T2-Hyp-Segmentor This repo is for segmentation of T2 hyp regions in gliomas. By downloading the model from here you can use it to segment your T2w ima

1 Jan 18, 2022
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Implicit Neural Representations with Periodic Activation Functions Project Page | Paper | Data Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. B

Vincent Sitzmann 1.4k Jan 06, 2023
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

OpenDILab 205 Dec 29, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022