The Codebase for Causal Distillation for Language Models.

Overview

Python 3.7 License CC BY-NC

Causal Distillation for Language Models

Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D. Goodman

The is an implementation of our preprint Causal Distillation for Language Models. The standard approach to distillation trains a student model against two objectives: a task-specific objective (e.g., language modeling) and an imitation objective that encourages the hidden states of the student model to be similar to those of the larger teacher model. In this paper, we show that it is beneficial to augment distillation with a third objective that encourages the student to imitate the causal computation process of the teacher through interchange intervention training (IIT).

We fork our main codebase from the Huggingface Distillation Interface.

Release Notes

12/02/2021 Our paper on Interchange Intervention Training (IIT) is released! Read this more formal definition of the method.
12/06/2021 Released the causal distillation codebase with the preprint.
12/06/2021 Released evaluation results on distilled tiny-BERT (3 layers) with the Wiki-Text 103M dataset.
⬜️ Released evaluation results on causal-distilled tiny-BERT (3 layers) with the Wiki-Text 103M + BookCorpus dataset.
⬜️ Released evaluation results on causal-distilled BERT (6 layers) with the Wiki-Text 103M + BookCorpus dataset.
⬜️ Released more ablation studies.
⬜️ Released causal-distilled tiny-BERT (3 layers) model files.
⬜️ Released causal-distilled BERT (6 layers) model files.

If you experience any issues or have suggestions, please contact me either thourgh the issues page or at [email protected].

Benchmark Results

Here are the results on the dev sets of GLUE:

Model Average-score CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI
DistilBERT (3 layers) 67.81 22.8 71.6 78.2 82.1 84.3 55.4 86.5 56.7 24.2
CausalBERT (3 layers) 69.71 25.0 72.9 78.6 83.1 84.9 55.4 86.9 66.5 21.5

1 Average-score computed without WNLI.

Main Contents

Citation

If you use this repository, please cite the following two papers: paper for interchange intervention training, and paper for the our distillation method.

  @article{geiger-etal-2021-iit,
        title={Inducing Causal Structure for Interpretable Neural Networks}, 
        author={Geiger, Atticus and Wu, Zhengxuan and Lu, Hanson and Rozner, Josh and Kreiss, Elisa and Icard, Thomas and Goodman, Noah D. and Potts, Christopher},
        year={2021},
        eprint={2112.00826},
        archivePrefix={arXiv},
        primaryClass={cs.LG}
  }

  @article{wu-etal-2021-distill,
        title={Causal Distillation for Language Models}, 
        author={Wu, Zhengxuan and Geiger, Atticus and Rozner, Josh and Kreiss, Elisa and Lu, Hanson and Icard, Thomas and Potts, Christopher and Goodman, Noah D.},
        year={2021},
        eprint={2112.02505},
        archivePrefix={arXiv},
        primaryClass={cs.CL}
  }

Requirements

  • Python 3.6 or 3.7 are supported.
  • Pytorch Version: 1.9.0
  • Transfermers Version: 4.11.3
  • Datasets Version: Version: 1.8.0
  • We have performed experiments on Titan V GPU. We assume 12GB of GPU memory (more memory can expedite training).
  • Since we build our codebase off the Huggingface Distillation Interface, please review their doc for requirements.

Dataset

Following the Huggingface Distillation Interface, we need to pre-process the datasets before we do distillation. You can refer to their repo for details. We adapt their pre-processing scripts, and update with a few improvements. For example, we can now binarize datasets from the Dataset Hub from huggingface directly.

# preprocessing from disk
python script/binarized_data.py \
--file_path ../../bert-mid-tuning/data-files/wikitext-15M \
--split train \
--field_name text \
--max_parsing_example 1000 \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file ./data/binarized_text

# preprocessing from huggingface.
python scripts/binarized_data.py \
--dataset_name bookcorpus \
--split train \
--field_name text \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file bookcorpus-dataset/binarized_text \
--cache_dir ./distill_cache/

python scripts/binarized_data.py \
--dataset_name wikitext \
--split train \
--field_name text \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file wikitext-dataset/binarized_text \
--cache_dir ./distill_cache/

python scripts/binarized_data.py \
--dataset_name wikitext+bookcorpus \
--split train \
--field_name text \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file wikitext+bookcorpus-dataset/binarized_text \
--cache_dir ./distill_cache/

# helper scripts to combine two binarized data files
python scripts/data_combinator.py \
--file_path_left ./bookcorpus-dataset/binarized_text.train.bert-base-uncased.pickle \
--file_path_right ./wikitext-dataset/binarized_text.train.bert-base-uncased.pickle \
--split train \
--tokenizer_name bert-base-uncased \
--dump_file wikitext+bookcorpus-dataset/binarized_text

# multiprocessing preprocessor.
python scripts/binarized_data.py \
--dataset_name bookcorpus \
--split train \
--field_name text \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file bookcorpus-dataset/binarized_text \
--cache_dir ./distill_cache/ \
--fast_process \
--preprocessing_num_workers 48

After you get the datasets ready, you need to generate token counts as well.

python scripts/token_counts.py \
--data_file data/binarized_text.train.bert-base-uncased.pickle \
--token_counts_dump data/binarized_text.train.token_counts.bert-base-uncased.pickle \
--vocab_size 30522

Distillation

Before training, we recommand you to initialize your student model with weights extracted from the teacher model.

python scripts/extract_distilbert.py \
--model_type bert \
--model_name bert-base-uncased \
--dump_checkpoint ./distillation_checkpoints/bert-base-uncased_num_layer_3.pth \
--num_layers 3

Now, here is an example for you to distill with our causal distillation objective or without,

CUDA_VISIBLE_DEVICES=9,4 python causal_train.py \
--force \
--n_gpu 2 \
--is_wandb \
--log_interval 10 \
--student_type distilbert \
--student_config ./training_configs/distilbert-base-uncased-small.json \
--student_pretrained_weights ./distillation_checkpoints/bert-base-uncased_num_layer_3.pth \
--teacher_type bert \
--teacher_name bert-base-uncased \
--neuron_mapping ./training_configs/single_middle.nm \
--mlm --alpha_ce 0.25 --alpha_mlm 0.25 --alpha_cos 0.25 --alpha_clm 0.0 --alpha_causal 0.25 \
--freeze_pos_embs \
--dump_path ./results/ \
--data_file ./wikitext-15M/binarized_text.train.bert-base-uncased.pickle \
--token_counts ./wikitext-15M/binarized_text.train.token_counts.bert-base-uncased.pickle \
--seed 42 \
--gradient_accumulation_steps 50 \
--n_epoch 3 \
--batch_size 5

CUDA_VISIBLE_DEVICES=0,1,2,3 python causal_train.py \
--force \
--n_gpu 4 \
--is_wandb \
--log_interval 10 \
--student_type distilbert \
--student_config ./training_configs/distilbert-base-uncased-small.json \
--student_pretrained_weights ./distillation_checkpoints/bert-base-uncased_num_layer_3.pth \
--teacher_type bert \
--teacher_name bert-base-uncased \
--neuron_mapping ./training_configs/single_middle.nm \
--mlm --alpha_ce 0.33 --alpha_mlm 0.33 --alpha_cos 0.33 --alpha_clm 0.0 --alpha_causal 0.00 \
--freeze_pos_embs \
--dump_path ./results/ \
--data_file ./wikitext-15M/binarized_text.train.bert-base-uncased.pickle \
--token_counts ./wikitext-15M/binarized_text.train.token_counts.bert-base-uncased.pickle \
--seed 42 \
--gradient_accumulation_steps 124 \
--n_epoch 6 \
--batch_size 4

Note that you can simply turn our causal distillation objective on/off through setting the arguments.

Evaluation

After you get your distilled models, you need to fine-tune them and evaluate them with downstream tasks. We provide you all the scripts you need to run.

MLM Evaluation

CUDA_VISIBLE_DEVICES=5 python run_mlm.py \
--model_name_or_path ./results/s_distilbert_t_bert_data_wikitext-15M_seed_42_mlm_True_ce_0.25_mlm_0.25_cos_0.25_causal_0.25_nm_single_multilayer/ \
--dataset_dir ../../bert-mid-tuning/data-files/wikitext-15M/ \
--tokenizer_name bert-base-uncased \
--do_eval \
--output_dir /tmp/test-mlm \
--cache_dir ./distill_cache/

GLUE Evaluation

CUDA_VISIBLE_DEVICES=5,7,8,9 python run_glue.py \
--model_name_or_path ./results/s_distilbert_t_bert_data_wikitext-dataset_seed_42_mlm_True_ce_0.33_mlm_0.33_cos_0.33_causal_0.0_nm_single_middle/ \
--tokenizer_name bert-base-uncased \
--task_name sst2 \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs 3 \
--output_dir ./results/ \
--save_total_limit 1 \
--cache_dir ./distill_cache/

CoNLL Evaluation

CUDA_VISIBLE_DEVICES=2,3,7,8 python run_ner.py \
--model_name_or_path ./results/s_distilbert_t_bert_data_wikitext-dataset_seed_42_mlm_True_ce_0.33_mlm_0.33_cos_0.33_causal_0.0_nm_single_middle_crossway_False/ \
--tokenizer_name bert-base-uncased \
--dataset_name conll2003 \
--do_train \
--do_eval \
--output_dir ./ner_results/ \
--save_total_limit 1 \
--cache_dir ./distill_cache/

SQuAD Evaluation

CUDA_VISIBLE_DEVICES=2,3,7,8 python run_qa.py \
--model_name_or_path ./results/s_distilbert_t_bert_data_wikitext-dataset_seed_42_mlm_True_ce_0.33_mlm_0.33_cos_0.33_causal_0.0_nm_single_middle_crossway_False/ \
--tokenizer_name bert-base-uncased \
--dataset_name squad \
--do_train \
--do_eval \
--per_device_train_batch_size 12 \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--save_total_limit 1 \
--output_dir ./qa_results/
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

FGR This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(I

Yi Wei 31 Dec 08, 2022
A Simulated Optimal Intrusion Response Game

Optimal Intrusion Response An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated u

Kim Hammar 10 Dec 09, 2022
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Davis Rempe 367 Dec 24, 2022
Unsupervised Attributed Multiplex Network Embedding (AAAI 2020)

Unsupervised Attributed Multiplex Network Embedding (DMGI) Overview Nodes in a multiplex network are connected by multiple types of relations. However

Chanyoung Park 114 Dec 06, 2022
Continual Learning of Long Topic Sequences in Neural Information Retrieval

ContinualPassageRanking Repository for the paper "Continual Learning of Long Topic Sequences in Neural Information Retrieval". In this repository you

0 Apr 12, 2022
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
A repo with study material, exercises, examples, etc for Devnet SPAUTO

MPLS in the SDN Era -- DevNet SPAUTO Get right to the study material: Checkout the Wiki! A lab topology based on MPLS in the SDN era book used for 30

Hugo Tinoco 67 Nov 16, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
Advanced yabai wooting scripts

Yabai Wooting scripts Installation requirements Both https://github.com/xiamaz/python-yabai-client and https://github.com/xiamaz/python-wooting-rgb ne

Max Zhao 3 Dec 31, 2021
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and

98 Jan 01, 2023
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

224 Jan 04, 2023
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022