Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Overview

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets

This is the official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR 2021). For more details, please refer to:


Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets

Yuan-Hong Liao, Amlan Kar, Sanja Fidler

University of Toronto

[Paper] [Video] [Project]

CVPR2021 Oral

Data is the engine of modern computer vision, which necessitates collecting large-scale datasets. This is expensive, and guaranteeing the quality of the labels is a major challenge. In this paper, we investigate efficient annotation strategies for collecting multi-class classification labels fora large collection of images. While methods that exploit learnt models for labeling exist, a surprisingly prevalent approach is to query humans for a fixed number of labels per datum and aggregate them, which is expensive. Building on prior work on online joint probabilistic modeling of human annotations and machine generated beliefs, we propose modifications and best practices aimed at minimizing human labeling effort. Specifically, we make use ofadvances in self-supervised learning, view annotation as a semi-supervised learning problem, identify and mitigate pitfalls and ablate several key design choices to propose effective guidelines for labeling. Our analysis is done in a more realistic simulation that involves querying human labelers, which uncovers issues with evaluation using existing worker simulation methods. Simulated experiments on a 125k image subset of the ImageNet dataset with 100 classes showthat it can be annotated to 80% top-1 accuracy with 0.35 annotations per image on average, a 2.7x and 6.7x improvement over prior work and manual annotation, respectively.


Code usage

  • Downdload the extracted BYOL features and change root directory accordingly
wget -P data/features/ http://www.cs.toronto.edu/~andrew/research/cvpr2021-good_practices/data/byol_r50-e3b0c442.pth_feat1.npy 

Replace REPO_DIR (here) with the absolute path to the repository.

  • Run online labeling with simulated workers
    • <EXPERIMENT> can be imagenet_split_0~5, imagenet_animal, imagenet_100_classes
    • <METHOD> can be ds_model, lean, improved_lean, efficient_annotation
    • <SIMULATION> can be amt_structured_noise, amt_uniform_noise
python main.py experiment=<EXPERIMENT> learner_method=<METHOD> simulation <SIMULATION>

To change other configurations, go check the config.yaml here.

Code Structure

There are several components in our system: Sampler, AnnotationHolder, Learner, Optimizer and Aggregator.

  • Sampler: We implement RandomSampler and GreedyTaskAssignmentSampler. For GreedyTaskAssignmentSampler, you need to specify an additional flag max_annotation_per_worker

For example,

python main.py experiment=imagenet_animal learner_method=efficient_annotation simulation=amt_structured_noise sampler.algo=greedy_task_assignment sampler.max_annotation_per_worker=2000
  • AnnotationHolder: It holds all information of each example including worker annotation, ground truth and current risk estimation. For simulated worker, you can call annotation_holder.collect_annotation to query annotations. You can also sample the annotation outside and add them by calling annotation_holder.add_annotation

  • Learner: We implement DummyLearner and LinearNNLearner. You can use your favorite architecture by overwriting NNLearner.init_learner

  • Optimizer: We implement EMOptimizer. By calling optimizer.step, the optimizer perform EM for a fixed number of times unless it's converged. If DummyLearner is not used, the optimizer is expected to call optimizer.fit_machine_learner to train the machine learner and perform prediction over all data examples.

  • Aggregator: We implement MjAggregator and BayesAggregator. MjAggregator performs majority vote to infer the final label. BayesAggregator treat the ground truth and worker skill as hidden variables and infer it based on the observation (worker annotation).

Citation

If you use this code, please cite:

@misc{liao2021good,
      title={Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets}, 
      author={Yuan-Hong Liao and Amlan Kar and Sanja Fidler},
      year={2021},
      eprint={2104.12690},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Sanja Fidler's Lab
Sanja Fidler's lab at the University of Toronto
Sanja Fidler's Lab
8-week curriculum for AI Builders

curriculum 8-week curriculum for AI Builders สารบัญ บทที่ 1 - Machine Learning คืออะไร บทที่ 2 - ชุดข้อมูลมหัศจรรย์และถิ่นที่อยู่ บทที่ 3 - Stochastic

AI Builders 134 Jan 03, 2023
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

ZJU3DV 98 Dec 07, 2022
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
Face and Body Tracking for VRM 3D models on the web.

Kalidoface 3D - Face and Full-Body tracking for Vtubing on the web! A sequal to Kalidoface which supports Live2D avatars, Kalidoface 3D is a web app t

Rich 257 Jan 02, 2023
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022