Deep Crop Rotation

Overview

Deep Crop Rotation

Paper (to come very soon!)

We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classification. Our approach, based on the PSE+LTAE model, provides a significant performance boost of +6.6 mIoU compared to single-year models. We release the first large-scale multi-year agricultural dataset with over 100 000 annotated parcels for 3 years: 2018, 2019, and 2020.

Sublime's custom image

Requirements

  • PyTorch + Torchnet
  • Numpy + Pandas + Scipy + scikit-learn
  • pickle
  • os
  • json
  • argparse

The code was developed in python 3.7.7 with pytorch 1.8.1 and cuda 11.3 on a debian, ubuntu 20.04.3 environment.

Downloads

Multi-year Sentinel-2 dataset

You can download our Multi-Year Sentinel-2 Dataset here.

Code

This repository contains the scripts to train a multi-year PSE-LTAE model with a spatially separated 5-fold cross-validation scheme. The implementations of the PSE-LTAE can be found in models.

Use the train.py script to train the 130k-parameter L-TAE based classifier with 2 years declarations and multi-year modeling (2018, 2019 and 2020). You will only need to specify the path to the dataset folder:

python3 train.py --dataset_folder path_to_multi_year_sentinel_2_dataset

If you want to use a specific number of year for temporal features add: --tempfeat number_of_year (eg. 3)

Choose the years used to train the model with: --year (eg. "['2018', '2019', '2020']")

Pre-trained models

Two pre-trained models are available in the models_saved repository:

  • Mdec: Multi-year Model with 2 years temporal features, trained on a mixed year training set.
  • Mmixed: singe-year model, trained on a mixed year training set.

Use our pre-trained model with: --test_mode true --loaded_model path_to_your_model --tempfeat number_of_years_used_to_train_the_model

Use your own data

If you want to train a model with your own data, you need to respect a specific architecture:

  • A main repository should contain two sub folders: DATA and META and a normalisation file.
  • META: contains the labels.json file containing the ground truth, dates.json containing each date of acquisition and geomfeat.json containing geometrical features (dates.json and geomfeat.json are optional).
  • DATA: contains a sub folder by year containing a .npy file by parcel.

Each parcel of the dataset must appear for each year with the same name in the DATA folder. You must specify the number of acquisitions in the year that has the most acquisitions with the option --lms length_of_the_sequence. You also need to add your own normalisation file in train.py

Credits

  • The original PSE-LTAE model adapted for our purpose can be found here
Owner
Félix Quinton
Félix Quinton
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Soubhik Sanyal 689 Dec 25, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
EfficientNetV2-with-TPU - Cifar-10 case study

EfficientNetV2-with-TPU EfficientNet EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisie

Sultan syach 1 Dec 28, 2021
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a t

Muhammad Fathy Rashad 643 Dec 30, 2022