Tree-based Search Graph for Approximate Nearest Neighbor Search

Related tags

Deep LearningTBSG
Overview

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search.

TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an approximation of Monotonic Search Network (MSNET). TBSG is very efficient with high precision.

Benchmark datasets

Datasets | No. of base | dimension | No. of query | download link
Sift | 1,000,000 | 128 | 10,000 | (http://corpus-texmex.irisa.fr/)
Gist | 1,000,000 | 300 | 1,000 | (http://corpus-texmex.irisa.fr/)
Glove | 1,183,514 | 100 | 10,000 | (http://downloads.zjulearning.org.cn/data/glove-100.tar.gz)
Crawl | 1,989,995 | 300 | 10,000 | (http://commoncrawl.org/)

How to use TBSG

1) compile

  • Prerequisite : openmp, cmake, eigen3
$ cd /path/to/project  
$ cmake . && make  

2) build an approximate kNNG

We use efanna_graph to build the kNNG.

3) create a TBSG index

$ cd /path/to/project/  
$ ./TBSG_index data_path M S MP nnfile save_path  

data_path is the path of base data.
M is the maximum of size of neighbors.
S is the candidate set size to build TBSG.
MP is the minimum of min_prob.
nnfile is the file of k nearest neighbor graph.
save_path is the path to save the index.

4) search with TBSG index

$ cd /path/to/project/
$ ./TBSG_search data_path query_path groundtruth_path save_path step

data_path is the path of base data.
query_path is the path of query data.
groundtruth is the path of groundtruth data.
save_path is the path to save the index.
step is the step size to expand the search pool.

Parameters used for four datasets

parameters for building kNNG

Dataset K L iter S R
Sift 200 200 12 10 100
Gist 400 400 12 15 100
Glove 400 420 12 20 300
Crawl 400 420 12 20 100

parameters for building index

Datasets M S MP
Sift 50 100 0.53
Gist 70 200 0.515
Glove 80 300 0.53
Crawl 50 200 0.53
Owner
Fanxbin
Fanxbin
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022
Official implementation of ETH-XGaze dataset baseline

ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting

Xucong Zhang 134 Jan 03, 2023
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022
Immortal tracker

Immortal_tracker Prerequisite Our code is tested for Python 3.6. To install required liabraries: pip install -r requirements.txt Waymo Open Dataset P

74 Dec 03, 2022
This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 12 Nov 08, 2022
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh

Institute for Machine Learning, Johannes Kepler University Linz 133 Jan 04, 2023
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound"

merlot_reserve Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound" MERLOT Reserve (in submission) is a mo

Rowan Zellers 92 Dec 11, 2022
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
Joint learning of images and text via maximization of mutual information

mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in

Ruizhi Liao 10 Dec 22, 2022
The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
Continual World is a benchmark for continual reinforcement learning

Continual World Continual World is a benchmark for continual reinforcement learning. It contains realistic robotic tasks which come from MetaWorld. Th

41 Dec 24, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022