The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

Related tags

Deep LearningGCoNet
Overview

GCoNet

The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

Trained model

Download final_gconet.pth (Google Drive). And it is the training log.

Put final_gconet.pth at GCoNet/tmp/GCoNet_run1.

Run test.sh for evaluation.

Data Format

Put the DUTS_class (training dataset from GICD), CoCA, CoSOD3k and Cosal2015 datasets to GCoNet/data as the following structure:

GCoNet
   ├── other codes
   ├── ...
   │ 
   └── data
         ├──── images
         |       ├── DUTS_class (DUTS_class's image files)
         |       ├── CoCA (CoCA's image files)
         |       ├── CoSOD3k (CoSOD3k's image files)
         │       └── Cosal2015 (Cosal2015's image files)
         │ 
         └────── gts
                  ├── DUTS_class (DUTS_class's Groundtruth files)
                  ├── CoCA (CoCA's Groundtruth files)
                  ├── CoSOD3k (CoSOD3k's Groundtruth files)
                  └── Cosal2015 (Cosal2015's Groundtruth files)

Usage

Run sh all.sh for training (train_GPU0.sh) and testing (test.sh).

Prediction results

The co-saliency maps of GCoNet can be found at Google Drive.

Note and Discussion

In your training, you can usually obtain slightly worse performance on CoCA dataset and slightly better perofmance on Cosal2015 and CoSOD3k datasets. The performance fluctuation is around 1.0 point for Cosal2015 and CoSOD3k datasets and around 2.0 points for CoCA dataset.

We observed that the results on CoCA dataset are unstable when train the model multiple times, and the performance fluctuation can reach around 1.5 ponits (But our performance are still much better than other methods in the worst case).
Therefore, we provide our used training pairs and sequences with deterministic data augmentation to help you to reproduce our results on CoCA. (In different machines, these inputs and data augmentation are different but deterministic.) However, there is still randomness in the training stage, and you can obtain different performance on CoCA.

There are three possible reasons:

  1. It may be caused by the challenging images of CoCA dataset where the target objects are relative small and there are many non-target objects in a complex environment.
  2. The imperfect training dataset. We use the training dataset in GICD, whose labels are produced by the classification model. There are some noisy labels in the training dataset.
  3. The randomness of training groups. In our training, two groups are randomly picked for training. Different collaborative training groups have different training difficulty.

Possible research directions for performance stability:

  1. Reduce label noise. If you want to use the training dataset in GICD to train your model. It is better to use multiple powerful classification models (ensemble) to obtain better class labels.
  2. Deterministic training groups. For two collaborative image groups, you can explore different ways to pick the suitable groups, e.g., pick two most similar groups for hard example mining.

It is a potential research direction to obtain stable results on such challenging real-world images. We follow other CoSOD methods to report the best performance of our model. You need to train the model multiple times to obtain the best result on CoCA dataset. If you want more discussion about it, you can contact me ([email protected]).

Citation

@inproceedings{fan2021gconet,
title={Group Collaborative Learning for Co-Salient Object Detection},
author={Fan, Qi and Fan, Deng-Ping and Fu, Huazhu and Tang, Chi-Keung and Shao, Ling and Tai, Yu-Wing},
booktitle={CVPR},
year={2021}
}

Acknowledgements

Zhao Zhang gives us lots of helps! Our framework is built on his GICD.

Owner
Qi Fan
Qi Fan
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
Set of models for classifcation of 3D volumes

Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet

69 Dec 28, 2022
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 05, 2023
Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

PortraitNet Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019 Introduction We propose a

265 Dec 01, 2022
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 📂 Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
OCR-D wrapper for detectron2 based segmentation models

ocrd_detectron2 OCR-D wrapper for detectron2 based segmentation models Introduction Installation Usage OCR-D processor interface ocrd-detectron2-segm

Robert Sachunsky 13 Dec 06, 2022