Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Overview

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021)

Motivation and Introduction

Domain Generalization is a task in machine learning where given a shift in the input data distribution, one is expected to perform well on a test task with a different input data distribution. For example, one might train a digit classifier on MNIST data and ask the model to generalize to predict digits that are rotated by say 30 degrees.

While many approaches have been proposed for this problem, we were intrigued by the results on the DomainBed benchmark which suggested that using the simple, empirical risk minimization (ERM) with a proper hyperparameter sweep leads to performance close to state of the art on Domain Generalization Problems.

What governs the generalization of a trained deep learning model using ERM to a given data distribution? This is the question we seek to answer in our NeurIPS 2021 paper:

An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers. Rama Vedantam, David Lopez-Paz*, David Schwab*.

NeurIPS 2021 (*=Equal Contribution)

This repository contains code used for producing the results in our paper.

Initial Setup

  1. Run source init.sh to install all the dependencies for the project. This will also initialize DomainBed as a submodule for the project

  2. Set requisite paths in setup.sh, and run source setup.sh

Computing Generalization Measures

  • Get set up with the DomainBed codebase and launch a sweep for an initial set of trained models (illustrated below for rotated MNIST dataset):
cd DomainBed/

python -m domainbed.scripts.sweep launch\
       --data_dir=${DOMAINBED_DATA} \
       --output_dir=${DOMAINBED_RUN_DIR}/sweep_fifty_fifty \
       --algorithms=ERM \
       --holdout_fraction=0.5\
       --datasets=RotatedMNIST \
       --n_hparams=1\
       --command_launcher submitit

After this step, we have a set of trained models that we can now look to evaluate and measure. Note that unlike the original domainbed paper we holdout a larger fraction (50%) of the data for evaluation of the measures.

  • Once the sweep finishes, aggregate the different files for use by the domianbed_measures codebase:
python domainbed_measures/write_job_status_file.py \
                --sweep_dir=${DOMAINBED_RUN_DIR}/sweep_fifty_fifty \
                --output_txt="domainbed_measures/scratch/sweep_release.txt"
  • Once this step is complete, we can compute various generalization measures and store them to disk for future analysis using:
SLURM_PARTITION="TO_BE_SET"
python domainbed_measures/compute_gen_correlations.py \
	--algorithm=ERM \
    --job_done_file="domainbed_measures/scratch/sweep_release.txt" \
    --run_dir=${MEASURE_RUN_DIR} \
    --all_measures_one_job \
	--slurm_partition=${SLURM_PARTITION}

Where we utilize slurm on a compute cluster to scale the experiments to thousands of models. If you do not have access to such a cluster with multiple GPUs to parallelize the computation, use --slurm_partition="" above and the code will run on a single GPU (although the results might take a long time to compute!).

  • Finally, once the above code is done, use the following code snippet to aggregate the values of the different generalization measures:
python domainbed_measures/extract_generalization_features.py \
    --run_dir=${MEASURE_RUN_DIR} \
    --sweep_name="_out_ERM_RotatedMNIST"

This step yeilds .csv files where each row corresponds to a given trained model. Each row overall has the following format:

dataset | test_envs | measure 1 | measure 2 | measure 3 | target_err

where:

  • test_envs specifies which environments the model is tested on or equivalently trained on, since the remaining environments are used for training
  • target_err specifies the target error value for regression
  • measure 1 specifies the which measure is being computed, e.g. sharpness or fisher eigen value based measures

In case of the file named, for example, sweeps__out_ERM_RotatedMNIST_canon_False_ood.csv, the validation error within domain wd_out_domain_err is also used as one of the measures and target_err is the out of domain generalization error, and all measures are computed on a held-out set of image inputs from the target domain (for more details see the paper).

Alternatively, in case of the file named, sweeps__out_ERM_RotatedMNIST_canon_False_wd.csv, the target_err is the validation accuracy in domain, and all the measures are computed on the in-distribution held-out images.

  • Using this file one can do a number of interesting regression analyses as reported in the paper for measuring generalization.

For example, to generate the kind of results in Table. 1 of the paper in the joint setting, run the following command options:

python domainbed_measures/analyze_results.py \
    --input_csv="${MEASURE_RUN_DIR}/sweeps__out_ERM_RotatedMNIST_canon_False_ood.csv"\
    --stratified_or_joint="joint"\
    --num_features=2 \
    --fix_one_feature_to_wd

Alternatively, to generate results in the stratified setting, run:

python domainbed_measures/analyze_results.py \
    --input_csv="${MEASURE_RUN_DIR}/sweeps__out_ERM_RotatedMNIST_canon_False_ood.csv"\
    --stratified_or_joint="stratified"\
    --num_features=2 \
    --fix_one_feature_to_wd

Finally, to generate results using a single feature (Alone setting in Table. 1), run:

python domainbed_measures/analyze_results.py \
    --input_csv="${MEASURE_RUN_DIR}/sweeps__out_ERM_RotatedMNIST_canon_False_ood.csv"\
    --num_features=1

Translation of measures from the code to the paper

The following table illustrates all the measures in the paper (Appendix Table. 2) and how they are referred to in the codebase:

Measure Name Code Reference
H-divergence c2st
H-divergence + Source Error c2st_perr
H-divergence MS c2st_per_env
H-divergence MS + Source Error c2st_per_env_perr
H-divergence (train) c2st_train
H-divergence (train) + Source Error c2st_train_perr
H-divergence (train) MS c2st_train_per_env
Entropy-Source or Entropy entropy
Entropy-Target entropy_held_out
Fisher-Eigval-Diff fisher_eigval_sum_diff_ex_75
Fisher-Eigval fisher_eigval_sum_ex_75
Fisher-Align or Fisher (main paper) fisher_eigvec_align_ex_75
HΔH-divergence SS hdh
HΔH-divergence SS + Source Error hdh_perr
HΔH-divergence MS hdh_per_env
HΔH-divergence MS + Source Error hdh_per_env_perr
HΔH-divergence (train) SS hdh_train
HΔH-divergence (train) SS + Source Error hdh_train_perr
Jacobian jacobian_norm
Jacobian Ratio jacobian_norm_relative
Jacobian Diff jacobian_norm_relative_diff
Jacobian Log Ratio jacobian_norm_relative_log_diff
Mixup mixup
Mixup Ratio mixup_relative
Mixup Diff mixup_relative_diff
Mixup Log Ratio mixup_relative_log_diff
MMD-Gaussian mmd_gaussian
MMD-Mean-Cov mmd_mean_cov
L2-Path-Norm. path_norm
Sharpness sharp_mag
H+-divergence SS v_plus_c2st
H+-divergence SS + Source Error v_plus_c2st_perr
H+-divergence MS v_plus_c2st_per_env
H+-divergence MS + Source Error v_plus_c2st_per_env_perr
H+ΔH+-divergence SS v_plus_hdh
H+ΔH+-divergence SS + Source Error v_plus_hdh_perr
H+ΔH+-divergence MS v_plus_hdh_per_env
H+ΔH+-divergence MS + Source Error v_plus_hdh_per_env_perr
Source Error wd_out_domain_err

Acknowledgments

We thank the developers of Decodable Information Bottleneck, Domain Bed and Jonathan Frankle for code we found useful for this project.

License

This source code is released under the Creative Commons Attribution-NonCommercial 4.0 International license, included here.

Owner
Meta Research
Meta Research
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021)

Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021) Authors: Xinshi Chen, Haoran Sun, Caleb Ellington, Eric Xing, Le Song Link to pap

Xinshi Chen 2 Dec 20, 2021
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.

Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl

idealo 4k Jan 08, 2023
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Ofir Press 138 Apr 15, 2022
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
Unit-Convertor - Unit Convertor Built With Python

Python Unit Converter This project can convert Weigth,length and ... units for y

Mahdis Esmaeelian 1 May 31, 2022
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
SoGCN: Second-Order Graph Convolutional Networks

SoGCN: Second-Order Graph Convolutional Networks This is the authors' implementation of paper "SoGCN: Second-Order Graph Convolutional Networks" in Py

Yuehao 7 Aug 16, 2022