Code for the paper Hybrid Spectrogram and Waveform Source Separation

Related tags

Deep Learningdemucs
Overview

Demucs Music Source Separation

tests badge linter badge

This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this commit. If you are experiencing issues and want the old Demucs back, please fill an issue, and then you can get back to the v2 with git checkout v2.

We provide an implementation of Hybrid Demucs for music source separation, trained both on the MusDB HQ dataset, and with internal extra training data. They can separate drums, bass and vocals from the rest and achieved the first rank at the 2021 Sony Music DemiXing Challenge (MDX)

Demucs is based on U-Net convolutional architecture inspired by Wave-U-Net. The most recent version features hybrid spectrogram/waveform separation, along with compressed residual branches, local attention and singular value regularization. Checkout our paper Hybrid Spectrogram and Waveform Source Separation for more details. As far as we know, Demucs is currently the only model supporting true end-to-end hybrid model training with shared information between the domains, as opposed to post-training model blending.

When trained only on MusDB HQ, Hybrid Demucs achieved a SDR of 7.33 on the MDX test set, and 8.11 dB with 200 extra training tracks. It is particularly efficient for drums and bass extraction, although KUIELAB-MDX-Net performs better for vocals and other accompaniments.

Schema representing the structure of Demucs,
    with a dual U-Net structure with a shared core, one branch for the temporal domain,
    and one branch for the spectral domain.

Important news if you are already using Demucs

See the release notes for more details.

  • 12/11/2021: Releasing Demucs v3 with hybrid domain separation. Strong improvements on all sources. This is the model that won Sony MDX challenge.
  • 11/05/2021: Adding support for MusDB-HQ and arbitrary wav set, for the MDX challenge. For more information on joining the challenge with Demucs see the Demucs MDX instructions
  • 28/04/2021: Demucs v2, with extra augmentation and DiffQ based quantization. EVERYTHING WILL BREAK, please restart from scratch following the instructions hereafter. This version also adds overlap between prediction frames, with linear transition from one to the next, which should prevent sudden changes at frame boundaries. Also, Demucs is now on PyPI, so for separation only, installation is as easy as pip install demucs :)
  • 13/04/2020: Demucs released under MIT: We are happy to release Demucs under the MIT licence. We hope that this will broaden the impact of this research to new applications.

Comparison with other models

We provide hereafter a summary of the different metrics presented in the paper. You can also compare Hybrid Demucs (v3), KUIELAB-MDX-Net, Spleeter, Open-Unmix, Demucs (v1), and Conv-Tasnet on one of my favorite songs on my soundcloud playlist.

Comparison of accuracy

Overall SDR is the mean of the SDR for each of the 4 sources, MOS Quality is a rating from 1 to 5 of the naturalness and absence of artifacts given by human listeners (5 = no artifacts), MOS Contamination is a rating from 1 to 5 with 5 being zero contamination by other sources. We refer the reader to our paper, for more details.

Model Domain Extra data? Overall SDR MOS Quality MOS Contamination
Wave-U-Net waveform no 3.2 - -
Open-Unmix spectrogram no 5.3 - -
D3Net spectrogram no 6.0 - -
Conv-Tasnet waveform no 5.7 -
Demucs (v2) waveform no 6.3 2.37 2.36
ResUNetDecouple+ spectrogram no 6.7 - -
KUIELAB-MDX-Net hybrid no 7.5 2.86 2.55
Hybrid Demucs (v3) hybrid no 7.7 2.83 3.04
MMDenseLSTM spectrogram 804 songs 6.0 - -
D3Net spectrogram 1.5k songs 6.7 - -
Spleeter spectrogram 25k songs 5.9 - -

Requirements

You will need at least Python 3.7. See requirements_minimal.txt for requirements for separation only, and environment-[cpu|cuda].yml (or requirements.txt) if you want to train a new model.

For Windows users

Everytime you see python3, replace it with python.exe. You should always run commands from the Anaconda console.

For musicians

If you just want to use Demucs to separate tracks, you can install it with

python3 -m pip -U install demucs

Advanced OS support are provided on the following page, you must read the page for your OS before posting an issues:

For machine learning scientists

If you have anaconda installed, you can run from the root of this repository:

conda env update -f environment-cpu.yml  # if you don't have GPUs
conda env update -f environment-cuda.yml # if you have GPUs
conda activate demucs
pip install -e .

This will create a demucs environment with all the dependencies installed.

You will also need to install soundstretch/soundtouch: on Mac OSX you can do brew install sound-touch, and on Ubuntu sudo apt-get install soundstretch. This is used for the pitch/tempo augmentation.

Running in Docker

Thanks to @xserrat, there is now a Docker image definition ready for using Demucs. This can ensure all libraries are correctly installed without interfering with the host OS. See his repo Docker Facebook Demucs for more information.

Running from Colab

I made a Colab to easily separate track with Demucs. Note that transfer speeds with Colab are a bit slow for large media files, but it will allow you to use Demucs without installing anything.

Demucs on Google Colab

Web Demo

(Possibly broken with the update, need to investigate) Integrated to Huggingface Spaces with Gradio. See demo: Hugging Face Spaces

Separating tracks

In order to try Demucs, you can just run from any folder (as long as you properly installed it)

demucs PATH_TO_AUDIO_FILE_1 [PATH_TO_AUDIO_FILE_2 ...]   # for Demucs
# If you used `pip install --user` you might need to replace demucs with python3 -m demucs
python3 -m demucs --mp3 --mp3-bitrate BITRATE PATH_TO_AUDIO_FILE_1  # output files saved as MP3
# If your filename contain spaces don't forget to quote it !!!
demucs "my music/my favorite track.mp3"
# You can select different models with `-n` mdx_q is the quantized model, smaller but maybe a bit less accurate.
demucs -n mdx_q myfile.mp3

If you have a GPU, but you run out of memory, please add -d cpu to the command line. See the section hereafter for more details on the memory requirements for GPU acceleration.

Separated tracks are stored in the separated/MODEL_NAME/TRACK_NAME folder. There you will find four stereo wav files sampled at 44.1 kHz: drums.wav, bass.wav, other.wav, vocals.wav (or .mp3 if you used the --mp3 option).

All audio formats supported by torchaudio can be processed (i.e. wav, mp3, flac, ogg/vorbis on Linux/Mac OS X etc.). On Windows, torchaudio has limited support, so we rely on ffmpeg, which should support pretty much anything. Audio is resampled on the fly if necessary. The output will be a wave file, either in int16 format or float32 (if --float32 is passed). You can pass --mp3 to save as mp3 instead, and set the bitrate with --mp3-bitrate (default is 320kbps).

Other pre-trained models can be selected with the -n flag. The list of pre-trained models is:

  • mdx: trained only on MusDB HQ, winning model on track A at the MDX challenge.
  • mdx_extra: trained with extra training data (including MusDB test set), ranked 2nd on the track B of the MDX challenge.
  • mdx_q, mdx_extra_q: quantized version of the previous models. Smaller download and storage but quality can be slightly worse. mdx_extra_q is the default model used.
  • SIG: where SIG is a single model from the model zoo.

The --shifts=SHIFTS performs multiple predictions with random shifts (a.k.a the shift trick) of the input and average them. This makes prediction SHIFTS times slower. Don't use it unless you have a GPU.

The --overlap option controls the amount of overlap between prediction windows (for Demucs one window is 10 seconds). Default is 0.25 (i.e. 25%) which is probably fine.

Memory requirements for GPU acceleration

If you want to use GPU acceleration, you will need at least 8GB of RAM on your GPU for demucs. Sorry, the code for demucs is not super optimized for memory! If you do not have enough memory on your GPU, simply add -d cpu to the command line to use the CPU. With Demucs, processing time should be roughly equal to 1.5 times the duration of the track.

Training Demucs

If you want to train (Hybrid) Demucs, please follow the training doc.

MDX Challenge reproduction

In order to reproduce the results from the Track A and Track B submissions, checkout the MDX Hybrid Demucs submission repo.

How to cite

@inproceedings{defossez2021hybrid,
  title={Hybrid Spectrogram and Waveform Source Separation},
  author={D{\'e}fossez, Alexandre},
  booktitle={Proceedings of the ISMIR 2021 Workshop on Music Source Separation},
  year={2021}
}

License

Demucs is released under the MIT license as found in the LICENSE file.

Owner
Meta Research
Meta Research
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
Source code for the plant extraction workflow introduced in the paper “Agricultural Plant Cataloging and Establishment of a Data Framework from UAV-based Crop Images by Computer Vision”

Plant extraction workflow Source code for the plant extraction workflow introduced in the paper "Agricultural Plant Cataloging and Establishment of a

Maurice Günder 0 Apr 22, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Neural Cellular Automata + CLIP

🧠 Text-2-Cellular Automata Using Neural Cellular Automata + OpenAI CLIP (Work in progress) Examples Text Prompt: Cthulu is watching cthulu_is_watchin

Mainak Deb 21 Dec 19, 2022
Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Variance-Aware-MT-Test-Sets Variance-Aware Machine Translation Test Sets License See LICENSE. We follow the data licensing plan as the same as the WMT

NLP2CT Lab, University of Macau 5 Dec 21, 2021
PyTorch implementation of the TTC algorithm

Trust-the-Critics This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critic

0 Nov 29, 2021
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality".

personalized-breath Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality". Guideline To ex

Manh-Ha Bui 2 Nov 15, 2021
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
COIN the currently largest dataset for comprehensive instruction video analysis.

COIN Dataset COIN is the currently largest dataset for comprehensive instruction video analysis. It contains 11,827 videos of 180 different tasks (i.e

86 Dec 28, 2022
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022