Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

Overview

UncertaintyAwareCycleConsistency

This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness via Uncertainty-aware Cycle Consistency. Translation methods often learn deterministic mappings without explicitly modelling the robustness to outliers or predictive uncertainty, leading to performance degradation when encountering unseen perturbations at test time. To address this, we propose a method based on Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC), which models the per-pixel residual by generalized Gaussian distribution, capable of modelling heavy-tailed distributions.

Requirements

python >= 3.6.10
pytorch >= 1.6.0
jupyter lab
torchio
scikit-image
scikit-learn

The structure of the repository is as follows:

root
 |-ckpt/ (will save all the checkpoints)
 |-data/ (save your data and related script)
 |-src/ (contains all the source code)
    |-ds.py 
    |-networks.py
    |-utils.py
    |-losses.py

Preparing Datasets

To prepare your datasets to use with this repo, place the root directory of the dataset in data/. The recommended way to structure your data is shown below.

data/
    |-Dataset_1/
        |-A/
            |-image1.png
            |-image2.png
            |-image3.png
            |-...
        |-B/
            |-image1.png
            |-image2.png
            |-image3.png
            |-...

Note the images need not be paired. The python script src/ds.py provides the PyTorch Dataset class to read such a dataset, used as explained below.

class Images_w_nameList(data.Dataset):
    '''
    can act as supervised or un-supervised based on flists
    '''
    def __init__(self, root1, root2, flist1, flist2, transform=None):

Here root1 and root2 represents the root directory for domain A and B, respectively. flist1 and flist2 contain image names for domain A and domain B. Note, if flist1 and flist2 are aligned then dataset will load paired images. To use it as unsupervised dataset loader ensure that flist1 and flist2 are not aligned.

Learning models with uncertainty

src/networks.py provides the generator and discriminator architectures.

src/utils.py provides the training API train_UGAC. The API is to train a pair of GANs, with the generators modified to predict the parameters of the generalized Gaussian distribution GGD ($\alpha$, $\beta$, $\mu$), as depicted in the above figure.

An example command to use the first API is:

#first instantiate the generators and discriminators
netG_A = CasUNet_3head(3,3)
netD_A = NLayerDiscriminator(3, n_layers=4)
netG_B = CasUNet_3head(3,3)
netD_B = NLayerDiscriminator(3, n_layers=4)

netG_A, netD_A, netG_B, netD_B = train_UGAC(
    netG_A, netG_B,
    netD_A, netD_B,
    train_loader,
    dtype=torch.cuda.FloatTensor,
    device='cuda',
    num_epochs=10,
    init_lr=1e-5,
    ckpt_path='../ckpt/ugac',
    list_of_hp = [1, 0.015, 0.01, 0.001, 1, 0.015, 0.01, 0.001, 0.05, 0.05, 0.01],
)

This will save checkpoints in ckpt/ named as ugac_eph*.pth. The arguement list_of_hp is a list of all the hyper-parameters representing weights of different weigths in the loss function.

Apart from the code in this repository, we also use the code from many other repositories like this, this, and this.

Bibtex

If you find the bits from this project helpful, please cite the following works:

Owner
EML Tübingen
Explainable Machine Learning group at University of Tübingen
EML Tübingen
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
A Python Package for Portfolio Optimization using the Critical Line Algorithm

PyCLA A Python Package for Portfolio Optimization using the Critical Line Algorithm Getting started To use PyCLA, clone the repo and install the requi

19 Oct 11, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
Structured Data Gradient Pruning (SDGP)

Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re

Bradley McDanel 10 Nov 11, 2022
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022
TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Tensorflow- MaskRCNN Steps git clone https://github.com/amalaj7/TFOD-MASKRCNN.gi

Amal Ajay 2 Jan 18, 2022
Non-Vacuous Generalisation Bounds for Shallow Neural Networks

This package requires jax, tensorflow, and numpy. Either tensorflow or scikit-learn can be used for loading data. To run in a nix-shell with required

Felix Biggs 0 Feb 04, 2022
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Kin-Yiu, Wong 2k Jan 02, 2023
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity

Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity Indic TTS Samples can be found at https://peter-yh-wu.github.io/cross-

Peter Wu 1 Nov 12, 2022
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
S2s2net - Sentinel-2 Super-Resolution Segmentation Network

S2S2Net Sentinel-2 Super-Resolution Segmentation Network Getting started Install

Wei Ji 10 Nov 10, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
Multi-Stage Progressive Image Restoration

Multi-Stage Progressive Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Sh

Syed Waqas Zamir 859 Dec 22, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., de

Jie Huang 14 Oct 21, 2022