This repository contains a toolkit for collecting, labeling and tracking object keypoints

Overview

Object Keypoint Tracking

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

The project allows collecting images from multiple viewpoints using a robot with a wrist mounted camera. These image sequences can then be labeled using an easy to use user interface, StereoLabel.

StereoLabel keypoint labeling

Once the images are labeled, a model can be learned to detect keypoints in the images and compute 3D keypoints in the camera's coordinate frame.

Installation

External Dependencies:

  • HUD
  • ROS melodic/noetic

Install HUD. Then install dependencies with pip install -r requirements.txt and finally install the package using pip3 install -e ..

Usage

Here we describe the process we used to arrive at our labeled datasets and learned models.

Calibration and setup

First, calibrate your camera and obtain a hand-eye-calibration. Calibrating the camera can be done using Kalibr. Hand-eye-calibration can be done with the ethz-asl/hand_eye_calibration or easy_handeye packages.

The software currently assumes that the Kalibr pinhole-equi camera model was used when calibrating the camera.

Kalibr will spit out a yaml file like the one at config/calibration.yaml. This should be passed in as the --calibration argument for label.py and other scripts.

Once you have obtained the hand-eye calibration, configure your robot description so that the tf tree correctly is able to transform poses from the base frame to the camera optical frame.

Collecting data

The script scripts/collect_bags.py is a helper program to assist in collecting data. It will use rosbag to record the camera topics and and transform messages.

Run it with python3 scripts/collect_bags.py --out .

Press enter to start recording a new sequence. Recording will start after a 5 second grace period, after which the topics will be recorded for 30 seconds. During the 30 seconds, slowly guide the robot arm to different viewpoints observing your target objects.

Encoding data

Since rosbag is not a very convenient or efficient format for our purposes, we encode the data into a format that is easier to work with and uses up less disk space. This is done using the script scripts/encode_bag.py.

Run it with python3 scripts/encode_bags.py --bags --out --calibration .

Labeling data

Valve

First decide how many keypoints you will use for your object class and what their configuration is. Write a keypoint configuration file, like config/valve.json and config/cups.json. For example, in the case of our valve above, we define four different keypoints, which are of two types. The first type is the center keypoint type and the second is the spoke keypoint type. For our valve, there are three spokes, so we write our keypoint configuration as:

{ "keypoint_config": [1, 3] }

What this means, is that there will first be a keypoint of the first type and then three keypoints of the next type. Save this file for later.

StereoLabel can be launched with python3 scripts/label.py . To label keypoints, click on the keypoints in the same order in each image. Make sure to label the points consistent with the keypoint configuration that you defined, so that the keypoints end up on the right heatmaps downstream.

If you have multiple objects in the scene, it is important that you annotate one object at the time, sticking to the keypoint order, as the tool makes the assumption that one object's keypoints follow each other. The amount of keypoints you label should equal the amount of objects times the total number of keypoints per object.

Once you have labeled an equal number of points on the left and right image, points will be backprojected, so that you can make sure that everything is correctly configured and that you didn't accidentally label the points in the wrong order. The points are saved at the same time to a file keypoints.json in each scene's directory.

Here are some keyboard actions the tool supports:

  • Press a to change the left frame with a random frame from the current sequence.
  • Press b to change the right frame with a random frame from the current sequence.
  • Press to go to next sequence, after you labeled a sequence.

Switching frames is especially useful, if for example in one viewpoint a keypoint is occluded and it is hard to annotate accurately.

Once the points have been saved and backprojected, you can freely press a and b to swap out the frames to different ones in the sequence. It will project the 3D points back into 2D onto the new frames. You can check that the keypoints project nicely to each frame. If not, you likely misclicked, the viewpoints are too close to each other, there could be an issue with your intrinsics or hand-eye calibration or the camera poses are not accurate for some other reason.

Checking the data

Once all your sequences have been labeled, you can check that the labels are correct on all frames using python scripts/show_keypoints.py , which will play the images one by one and show the backprojected points.

Learning a model

First, download the weights for the CornerNet backbone model. This can be done from the CornerNet repository. We use the CornerNet-Squeeze model. Place the file at models/corner_net.pkl.

You can train a model with python scripts/train.py --train --val . Where --train points to the directory containing your training scenes. --val points to the directory containing your validation scenes.

Once done, you can package a model with python scripts/package_model.py --model lightning_logs/version_x/checkpoints/ .ckpt --out model.pt

You can then run and check the metrics on a test set using python scripts/eval_model.py --model model.pt --keypoints .

General tips

Here are some general tips that might be of use:

  • Collect data at something like 4-5 fps. Generally, frames that are super close to each other aren't that useful and you don't really need every single frame. I.e. configure your camera node to only publish image messages at that rate.
  • Increase the publishing rate of your robot_state_publisher node to something like 100 or 200.
  • Move your robot slowly when collecting the data such that the time synchronization between your camera and robot is not that big of a problem.
  • Keep the scenes reasonable.
  • Collect data in all the operating conditions in which you will want to be detecting keypoints at.
Owner
ETHZ ASL
ETHZ ASL
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
A Marvelous ChatBot implement using PyTorch.

PyTorch Marvelous ChatBot [Update] it's 2019 now, previously model can not catch up state-of-art now. So we just move towards the future a transformer

JinTian 223 Oct 18, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

2D-TAN (Optimized) Introduction This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for

Joya Chen 112 Dec 31, 2022
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021
This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
constructing maps of intellectual influence from publication data

Influencemap Project @ ANU Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of a

CS Metrics 13 Jun 18, 2022
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023