Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Overview

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation

This is a pytorch project for the paper Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation by Xiaogang Xu, Hengshuang Zhao and Jiaya Jia presented at ICCV2021.

paper link, arxiv

Introduction

Adversarial training is promising for improving the robustness of deep neural networks towards adversarial perturbations, especially on the classification task. The effect of this type of training on semantic segmentation, contrarily, just commences. We make the initial attempt to explore the defense strategy on semantic segmentation by formulating a general adversarial training procedure that can perform decently on both adversarial and clean samples. We propose a dynamic divide-and-conquer adversarial training (DDC-AT) strategy to enhance the defense effect, by setting additional branches in the target model during training, and dealing with pixels with diverse properties towards adversarial perturbation. Our dynamical division mechanism divides pixels into multiple branches automatically. Note all these additional branches can be abandoned during inference and thus leave no extra parameter and computation cost. Extensive experiments with various segmentation models are conducted on PASCAL VOC 2012 and Cityscapes datasets, in which DDC-AT yields satisfying performance under both white- and black-box attacks.

Project Setup

For multiprocessing training, we use apex, tested with pytorch 1.0.1.

First install Python 3. We advise you to install Python 3 and PyTorch with Anaconda:

conda create --name py36 python=3.6
source activate py36

Clone the repo and install the complementary requirements:

cd $HOME
git clone --recursive [email protected]:dvlab-research/Robust_Semantic_Segmentation.git
cd Robust_Semantic_Segmentation
pip install -r requirements.txt

The environment of our experiments is CUDA10.2 and TITAN V. And you should install apex for training.

Requirement

  • Hardware: 4-8 GPUs (better with >=11G GPU memory)

Train

  • Download related datasets and you should modify the relevant paths specified in folder "config"
  • Download ImageNet pre-trained models and put them under folder initmodel for weight initialization.

Cityscapes

  • Train the baseline model with no defense on Cityscapes with PSPNet
    sh tool_train/cityscapes/psp_train.sh
    
  • Train the baseline model with no defense on Cityscapes with DeepLabv3
    sh tool_train/cityscapes/aspp_train.sh
    
  • Train the model with SAT on Cityscapes with PSPNet
    sh tool_train/cityscapes/psp_train_sat.sh
    
  • Train the model with SAT on Cityscapes with DeepLabv3
    sh tool_train/cityscapes/aspp_train_sat.sh
    
  • Train the model with DDCAT on Cityscapes with PSPNet
    sh tool_train/cityscapes/psp_train_ddcat.sh
    
  • Train the model with DDCAT on Cityscapes with DeepLabv3
    sh tool_train/cityscapes/aspp_train_ddcat.sh
    

VOC2012

  • Train the baseline model with no defense on VOC2012 with PSPNet
    sh tool_train/voc2012/psp_train.sh
    
  • Train the baseline model with no defense on VOC2012 with DeepLabv3
    sh tool_train/voc2012/aspp_train.sh
    
  • Train the model with SAT on VOC2012 with PSPNet
    sh tool_train/voc2012/psp_train_sat.sh
    
  • Train the model with SAT on VOC2012 with DeepLabv3
    sh tool_train/voc2012/aspp_train_sat.sh
    
  • Train the model with DDCAT on VOC2012 with PSPNet
    sh tool_train/voc2012/psp_train_ddcat.sh
    
  • Train the model with DDCAT on VOC2012 with DeepLabv3
    sh tool_train/voc2012/aspp_train_ddcat.sh
    

You can use the tensorboardX to visualize the training loss, by

tensorboard --logdir=exp/path_to_log

Test

We provide the script for evaluation, reporting the miou on both clean and adversarial samples (the adversarial samples are obtained with attack whose n=2, epsilon=0.03 x 255, alpha=0.01 x 255)

Cityscapes

  • Evaluate the PSPNet trained with no defense on Cityscapes
    sh tool_test/cityscapes/psp_test.sh
    
  • Evaluate the PSPNet trained with SAT on Cityscapes
    sh tool_test/cityscapes/psp_test_sat.sh
    
  • Evaluate the PSPNet trained with DDCAT on Cityscapes
    sh tool_test/cityscapes/psp_test_ddcat.sh
    
  • Evaluate the DeepLabv3 trained with no defense on Cityscapes
    sh tool_test/cityscapes/aspp_test.sh
    
  • Evaluate the DeepLabv3 trained with SAT on Cityscapes
    sh tool_test/cityscapes/aspp_test_sat.sh
    
  • Evaluate the DeepLabv3 trained with DDCAT on Cityscapes
    sh tool_test/cityscapes/aspp_test_ddcat.sh
    

VOC2012

  • Evaluate the PSPNet trained with no defense on VOC2012
    sh tool_test/voc2012/psp_test.sh
    
  • Evaluate the PSPNet trained with SAT on VOC2012
    sh tool_test/voc2012/psp_test_sat.sh
    
  • Evaluate the PSPNet trained with DDCAT on VOC2012
    sh tool_test/voc2012/psp_test_ddcat.sh
    
  • Evaluate the DeepLabv3 trained with no defense on VOC2012
    sh tool_test/voc2012/aspp_test.sh
    
  • Evaluate the DeepLabv3 trained with SAT on VOC2012
    sh tool_test/voc2012/aspp_test_sat.sh
    
  • Evaluate the DeepLabv3 trained with DDCAT on VOC2012
    sh tool_test/voc2012/aspp_test_ddcat.sh
    

Pretrained Model

You can download the pretrained models from https://drive.google.com/file/d/120xLY_pGZlm3tqaLxTLVp99e06muBjJC/view?usp=sharing

Cityscapes with PSPNet

The model trained with no defense: pretrain/cityscapes/pspnet/no_defense
The model trained with SAT: pretrain/cityscapes/pspnet/sat
The model trained with DDCAT: pretrain/cityscapes/pspnet/ddcat

Cityscapes with DeepLabv3

The model trained with no defense: pretrain/cityscapes/deeplabv3/no_defense
The model trained with SAT: pretrain/cityscapes/deeplabv3/sat
The model trained with DDCAT: pretrain/cityscapes/deeplabv3/ddcat

VOC2012 with PSPNet

The model trained with no defense: pretrain/voc2012/pspnet/no_defense
The model trained with SAT: pretrain/voc2012/pspnet/sat
The model trained with DDCAT: pretrain/voc2012/pspnet/ddcat

VOC2012 with DeepLabv3

The model trained with no defense: pretrain/voc2012/deeplabv3/no_defense
The model trained with SAT: pretrain/voc2012/deeplabv3/sat
The model trained with DDCAT: pretrain/voc2012/deeplabv3/ddcat

Citation Information

If you find the project useful, please cite:

@inproceedings{xu2021ddcat,
  title={Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation},
  author={Xiaogang Xu, Hengshuang Zhao and Jiaya Jia},
  booktitle={ICCV},
  year={2021}
}

Acknowledgments

This source code is inspired by semseg.

Contributions

If you have any questions/comments/bug reports, feel free to e-mail the author Xiaogang Xu ([email protected]).

Owner
DV Lab
Deep Vision Lab
DV Lab
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Yazhou XING 90 Oct 19, 2022
Software associated to AAAI paper "Planning with Biological Neurons and Synapses"

jBrain Software associated with the AAAI 2022 paper Francesco D'Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale, Christos H. Papadimit

Pierluigi Crescenzi 1 Apr 10, 2022
Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022
Deep Surface Reconstruction from Point Clouds with Visibility Information

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

Raphael Sulzer 23 Jan 04, 2023
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.

Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde

Awais Saleem 1 Jan 20, 2022
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
Nvidia Semantic Segmentation monorepo

Paper | YouTube | Cityscapes Score Pytorch implementation of our paper Hierarchical Multi-Scale Attention for Semantic Segmentation. Please refer to t

NVIDIA Corporation 1.6k Jan 04, 2023
Low-dose Digital Mammography with Deep Learning

Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography ====== This repository contains

WANG-AXIS 6 Dec 13, 2022
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023