DUE: End-to-End Document Understanding Benchmark

Overview

This is the repository that provide tools to download data, reproduce the baseline results and evaluation.

What can you achieve with this guide

Based on this repository, you may be able to:

  1. download data for benchmark in a unified format.
  2. run all the baselines.
  3. evaluate already trained baseline models.

Install benchmark-related repositories

Start the container:

sudo userdocker run nvcr.io/nvidia/pytorch:20.12-py3

Clone the repo with:

git clone [email protected]:due-benchmark/baselines.git

Install the requirements:

pip install -e .

1. Download datasets and the base model

The datasets are re-hosted on the https://duebenchmark.com/data and can be downloaded from there. Moreover, since the baselines are finetuned based on the T5 model, you need to download the original model. Again it is re-hosted at https://duebenchmark.com/data. Please place it into the due_benchmark_data directory after downloading.

TODO: dopisać resztę

2. Run baseline trainings

2.1 Process datasets into memmaps (binarization)

In order to process datasets into memmaps, set the directory downloaded_data_path to downloaded data, set memmap_directory to a new directory that will store binarized datas, and use the following script:

./create_memmaps.sh

2.2 Run training script

Single training can be started with the following command, assuming out_dir is set as an output for the trained model's checkpoints and generated outputs. Additionally, set datas to any of the previously generated datasets (e.g., to DeepForm).

python benchmarker/cli/l5/train.py \
    --model_name_or_path ${downloaded_data_path}/t5-base \
    --relative_bias_args="[{\"type\":\"1d\"}]" \
    --dropout_rate 0.15 \
    --model_type=t5 \
    --output_dir ${out_dir} \
    --data_dir ${memmap_directory}/${datas}_memmap/train \
    --val_data_dir ${memmap_directory}/${datas}_memmap/dev \
    --test_data_dir ${memmap_directory}/${datas}_memmap/test \
    --gpus 1 \
    --max_epochs 30 \
    --train_batch_size 1 \
    --eval_batch_size 2 \
    --overwrite_output_dir \
    --accumulate_grad_batches 64 \
    --max_source_length 1024 \
    --max_target_length 256 \
    --eval_max_gen_length 16 \
    --learning_rate 2e-4 \
    --lr_scheduler constant \
    --warmup_steps 100 \
    --trim_batches \ 
    --do_train \
    --do_predict \ 
    --additional_data_fields doc_id label_name \
    --early_stopping_patience 20 \
    --segment_levels tokens pages \
    --optimizer adamw \
    --weight_decay 1e-5 \
    --adam_epsilon 1e-8 \
    --num_workers 4 \
    --val_check_interval 1

The models presented in the paper differs only in two places. The first is the choice of --relative_bias_args. T5 uses [{'type': '1d'}] whereas both +2D and +DALL-E use [{'type': '1d'}, {'type': 'horizontal'}, {'type': 'vertical'}]

Moreover +DALL-E had --context_embeddings set to [{'dimension': 1024, 'use_position_bias': False, 'embedding_type': 'discrete_vae', 'pretrained_path': '', 'image_width': 256, 'image_height': 256}]

3. Evaluate

3.1 Convert output to the submission file

In order to compare two files (generated by the model with the provided library and the gold-truth answers), one has to convert the generated output into a format that can be directly compared with documents.jsonl. Please use:

python to_submission_file.py ${downloaded_data_path} ${out_dir}

3.2 Evaluate reproduced models

Finally outputs can be evaluated using the provided evaluator. First, get back into main directory, where this README.md is placed and install it by cd due_evaluator-master && pip install -r requirement And run:

python due_evaluator --out-files baselines/test_generations.jsonl --reference ${downloaded_data_path}/DeepForm

3.3 Evaluate baseline outputs

We provide an examples of outputs generated by our baseline (DeepForm). They should be processed with:

python benchmarker-code/to_submission_file.py ${downloaded_data_path}/model_outputs_example ${downloaded_data_path}
python due_evaluator --out-files ./benchmarker/cli/l5/baselines/test_generations.txt.jsonl --reference ${downloaded_data_path}/DeepForm/test/document.jsonl

The expected output should be:

       Label       F1  Precision   Recall
  advertiser 0.512909   0.513793 0.512027
contract_num 0.778761   0.780142 0.777385
 flight_from 0.794376   0.795775 0.792982
   flight_to 0.804921   0.806338 0.803509
gross_amount 0.355476   0.356115 0.354839
         ALL 0.649771   0.650917 0.648630
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

Meta Research 663 Jan 06, 2023
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Viewmaker Networks: Learning Views for Unsupervised Representation Learning Alex Tamkin, Mike Wu, and Noah Goodman Paper link: https://arxiv.org/abs/2

Alex Tamkin 31 Dec 01, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
LBK 20 Dec 02, 2022