Doing the asl sign language classification on static images using graph neural networks.

Overview

SignLangGNN

When GNNs đź’ś MediaPipe. This is a starter project where I tried to implement some traditional image classification problem i.e. the ASL sign language classification problem. The twist here is we used the graph generated from the hand images using mediapipe. And the graph I got, I extrated the {x, y, z} co-ordinates of the nodes and also the edge index for the connecteion and translated this image classification problem to a graph classiciation problem.

Project Structure

--------- Data
            |___ CSVs # containing the co-ordinates of per images
            |___ raw
                   |___ train.csv
                   |___ valid.csv
                   |___ test.csv 
            |___ ImageData
                   |___ asl_alphabet_test
                            |___ A/
                            |___ B/ 
                            ....
                            |___ space

                   |___ asl_alphabet_train
            |
            |___ Models # the GNN models
            |___ src
                   |__ dataset.py # pyg custom data
                   |__ train.py   # train loop
                   |__ utils.py   # different utility functions
            |
            |___ main.py # from data to train
            |___ run.py  # real time video visualization

I used PyTorch geometric and PyTorch for the project. To view the results in details head over to the IPYNB folder and see the first IPYNB file. To run this project first clone this repo using this command:

git clone https://github.com/Anindyadeep/SignLangGNN

After that run the main.py using this command. Other things will be managed automatically, provided al,l the essential libraries are installed.

python3 main.py

Initial Results

The traning and validation process went smooth as with a very simple base model it gave an train acc of 0.85 and validation acc of 0.86. It also provided an test acc of 0.84. The model was run for 8 epochs. The model also gets confused with some sort of examples and we can say that it currently suffers from adverserial attacks.

Improvements

These are the improvements we can do with this project:

  1. Improved GNN models. We can make more robust and complex models and improve the performance.

  2. Adding edge features. Some of the edge features like distance between two nodes and the angle between two nodes could produce some potential improvements to the performance of our model.

Future Works

Using Temporal Graph Neural Nets could make more robust and accurate model for this kind of problem. But for that we need temporal data like videos instaed of images, so that we could generate static temporal graphs and compute on them as a dynamic graph sequence problem.

Owner
Deep learning enthusiast, like to know something new every time....
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022
Official PyTorch implementation of MAAD: A Model and Dataset for Attended Awareness

MAAD: A Model for Attended Awareness in Driving Install // Datasets // Training // Experiments // Analysis // License Official PyTorch implementation

7 Oct 16, 2022
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
DeepFill v1/v2 with Contextual Attention and Gated Convolution, CVPR 2018, and ICCV 2019 Oral

Generative Image Inpainting An open source framework for generative image inpainting task, with the support of Contextual Attention (CVPR 2018) and Ga

2.9k Dec 16, 2022
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Vector AI 267 Dec 23, 2022
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
Video-Music Transformer

VMT Video-Music Transformer (VMT) is an attention-based multi-modal model, which generates piano music for a given video. Paper https://arxiv.org/abs/

Chin-Tung Lin 5 Jul 13, 2022
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.

pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj

Adrian Edwards 290 Jan 09, 2023