The DarkRift2 networking framework written in Python 3

Overview

DarkRiftPy

DarkRiftPy is Darkrift2 written in Python 3. The implementation is fully compatible with the original version. So you can write a client side on Python that connects to a Darkrift2 server written in C# using the original Darkrift2 library, and vice versa.

DarkRiftPy is built on top of asyncio, Python's standard asynchronus I/O library, and provides a convenient high-level async/await API.

Installation

$ python3 -m pip install darkriftpy

Quick usage example

A simple exampls contains two separate scripts client.py and server.py for client and server respectively.

After client is connected to the server the latter waits for a darkrift message with tag 1, which contains a list of int32 integers in the payload. Once the message with tag 1 is received, the server starts to randomly select a value from the given list and sends it back to the client.

client.py:

None: try: async with darkriftpy.connect("127.0.0.1", 4296, 4296) as client: items = [random.randint(MIN_INT32, MAX_INT32) for _ in range(RND_POOL)] writer = darkriftpy.DarkriftWriter() writer.write_int32s(items) await client.send(darkriftpy.DarkriftMessage(1, writer.bytes)) async for message in client: await process_message(message) print("connection has been closed by the server") except ConnectionError: print("failed to connect to the server") if __name__ == "__main__": asyncio.run(main()) ">
import asyncio
import random


import darkriftpy


RND_POOL = 20

MIN_INT32 = (2 ** 31) * -1
MAX_INT32 = 2 ** 31 - 1


async def process_message(message: darkriftpy.DarkriftMessage) -> None:
    if message.tag != 2:
        raise ValueError("wrong message received")

    num = message.get_reader().read_int32()
    print(f"the server chose the number: {num}")


async def main() -> None:
    try:
        async with darkriftpy.connect("127.0.0.1", 4296, 4296) as client:
            items = [random.randint(MIN_INT32, MAX_INT32) for _ in range(RND_POOL)]

            writer = darkriftpy.DarkriftWriter()
            writer.write_int32s(items)

            await client.send(darkriftpy.DarkriftMessage(1, writer.bytes))

            async for message in client:
                await process_message(message)

            print("connection has been closed by the server")

    except ConnectionError:
        print("failed to connect to the server")


if __name__ == "__main__":
    asyncio.run(main())

server.py:

None: async with darkriftpy.serve(handle_client, "127.0.0.1", 4296, 4296) as server: await asyncio.Future() if __name__ == "__main__": asyncio.run(main()) ">
import asyncio
import random


import darkriftpy


async def handle_client(client: darkriftpy.DarkriftClient) -> None:
    message = await client.recv()

    if message.tag != 1:
        raise RuntimeError("wrong client message received")

        client.close()
        await client.wait_closed()
        return

    reader = message.get_reader()
    items = reader.read_int32s()

    while True:
        writer = darkriftpy.DarkriftWriter()
        writer.write_int32(random.choice(items))

        try:
            await client.send(darkriftpy.DarkriftMessage(2, writer.bytes))
        except darkriftpy.ConnectionClosedError:
            print(f"the client({client.connection_id}) has been disconnected")
            await client.wait_closed()
            return

        await asyncio.sleep(1)


async def main() -> None:
    async with darkriftpy.serve(handle_client, "127.0.0.1", 4296, 4296) as server:
        await asyncio.Future()


if __name__ == "__main__":
    asyncio.run(main())

User defined messages

darkriftpy provides a convinient way to create/send/receive user-defined messages. There is a Message class that can be used as a base class for user-defined ones. The Darkrift tag of a user-defined message is defined by passing the keyword tag argument in the class definition:

import darkriftpy

class ChooseMessage(darkriftpy.Message, tag=1):
    ...

For now, the ChooseMessage message contains no payload. Since the ChooseMessage class is implicitly decorated with the @dataclass decorator, the user can define class variables with type annotations which will be automatically deserialized from or serialized to a binary stream using DarkriftReader and DarkriftWriter classes. Only the following native types can be used as a class variable type: str, bytes, bool, float. Since Darkrift2 allows to use types which are not natively available in python, the darkriftpy.types module provides NewType extensions to cover all the required Darkrift2 types.

import darkriftpy
from darkriftpy.types import int32


class ChooseMessage(darkriftpy.Message, tag=1):
    items: list[int32]

As you can see we used the int32 type from the darkriftpy.types module to define 4 byte signed integer. Since the ChooseMessage class is implicitly decorated with the @dataclass decorator and there is no custom constructor, the following constructor will be created automatically: __init__(self, items: lsit[int32])

Therefore, the ChooseMessage class can be instantiated as follows:

import random


import darkriftpy
from darkriftpy.types import int32


MIN_INT32 = (2 ** 31) * -1
MAX_INT32 = 2 ** 31 - 1


class ChooseMessage(darkriftpy.Message, tag=1):
    items: list[int32]


message = ChooseMessage([random.randint(MIN_INT32, MAX_INT32) for _ in range(10)])

# message.items contains a list with 10 int32 integers

Since the darkriftpy.Message is inherited from darkriftpy.DarkriftMessage the user-defined message can be passed as is to the send method of the darkriftpy.DarkriftClient object.

To convert a received darkriftpy.DarkriftMessage message to the user-defined one, the user can do the following:

...

client: darkriftpy.DarkriftClient
message: darkriftpy.DarkriftMessage = await client.recv()

try:
    choose_message = ChooseMessage.read(message.get_reader())
except RuntimeError:
    # failed to parse the received message
    ...

print(choose_message.items)

The darkriftpy package provides the MessageContainer class to simplify the message serialization and de-siarilization.

import darkriftpy
from darkriftpy.types import int32


messages = darkriftpy.MessageContainer()


@messages.add
class ChooseMessage(darkriftpy.Message, tag=1):
    items: list[int32]


@messages.add
class ChoiceMessage(darkriftpy.Message, tag=2):
    item: int32

...

client: darkriftpy.DarkriftClient
message: darkriftpy.DarkriftMessage = await client.recv()

try:
    msg = messages.convert(message)
except RuntimeError:
    # failed to convert the received darkrift message
    # to the user-defined one

if isinstance(msg, ChooseMessage):
    print(msg.items)
elif isinstance(msg, ChoiceMessage):
    print(msg.item)

We used the add method of the MessageContainer class as decorator to add the user-defined class into the message container messages.
The convert method of the MessageContainer class allows us to convert a raw darkrift message to the user-defined specific one.

Using all these we can create a client wrapper that will return already deserialized messages.

from collections.abc import AsyncIterator


import darkriftpy


class Client:
    def __init__(
        self, client: darkriftpy.DarkriftClient, messages: darkriftpy.MessageContainer
    ):
        self._client = client
        self._messages = messages

    async def recv(self) -> darkriftpy.DarkriftMessage:
        message = await self._client.recv()

        try:
            return self._messages.convert(message)
        except RuntimeError:
            # just return the message as is
            pass

        return message

    async def send(self, message: darkriftpy.DarkriftMessage, reliable: bool = True) -> None:
        await self._client.send(message, reliable)

    def __aiter__(self) -> AsyncIterator[darkriftpy.DarkriftMessage]:
        return self

    async def __anext__(self) -> darkriftpy.DarkriftMessage:
        """
        Returns the next message.

        Stop iteration when the connection is closed.

        """
        try:
            return await self.recv()
        except darkrift.ConnectionClosedError:
            raise StopAsyncIteration()

So now we can use the client wrapper to send and receive user specified messages.

Let's update the first example to use all described features.

client.py:

None: if not isinstance(message, ChoiceMessage): raise ValueError("wrong message received") print(f"the server chose the number: {message.item}") async def main(): try: c: darkriftpy.DarkriftClient async with darkriftpy.connect("127.0.0.1", 4296, 4296) as c: client = Client(c, messages) choose_message = ChooseMessage( [random.randint(MIN_INT32, MAX_INT32) for _ in range(RND_POOL)] ) await client.send(choose_message) async for message in client: await process_message(message) print("Connection has been closed by the server") except ConnectionError: print("failed to connect to the server") if __name__ == "__main__": asyncio.run(main()) ">
import asyncio
import random
from collections.abc import AsyncIterator

import darkriftpy
from darkriftpy.types import int32


RND_POOL = 20

MIN_INT32 = (2 ** 31) * -1
MAX_INT32 = 2 ** 31 - 1


messages = darkriftpy.MessageContainer()


@messages.add
class ChooseMessage(darkriftpy.Message, tag=1):
    items: list[int32]


@messages.add
class ChoiceMessage(darkriftpy.Message, tag=2):
    item: int32


class Client:
    def __init__(
        self, client: darkriftpy.DarkriftClient, messages: darkriftpy.MessageContainer
    ):
        self._client = client
        self._messages = messages

    async def recv(self) -> darkriftpy.DarkriftMessage:
        message = await self._client.recv()

        try:
            return self._messages.convert(message)
        except RuntimeError:
            # just return the message as is
            pass

        return message

    async def send(
        self, message: darkriftpy.DarkriftMessage, reliable: bool = True
    ) -> None:
        await self._client.send(message, reliable)

    def __aiter__(self) -> AsyncIterator[darkriftpy.DarkriftMessage]:
        return self

    async def __anext__(self) -> darkriftpy.DarkriftMessage:
        """
        Returns the next message.

        Stop iteration when the connection is closed.

        """
        try:
            return await self.recv()
        except darkrift.ConnectionClosedError:
            raise StopAsyncIteration()


async def process_message(message: darkriftpy.DarkriftMessage) -> None:
    if not isinstance(message, ChoiceMessage):
        raise ValueError("wrong message received")

    print(f"the server chose the number: {message.item}")


async def main():
    try:
        c: darkriftpy.DarkriftClient
        async with darkriftpy.connect("127.0.0.1", 4296, 4296) as c:
            client = Client(c, messages)
            choose_message = ChooseMessage(
                [random.randint(MIN_INT32, MAX_INT32) for _ in range(RND_POOL)]
            )

            await client.send(choose_message)

            async for message in client:
                await process_message(message)

            print("Connection has been closed by the server")

    except ConnectionError:
        print("failed to connect to the server")


if __name__ == "__main__":
    asyncio.run(main())

server.py:

None: client = Client(c, messages) message = await client.recv() if not isinstance(message, ChooseMessage): raise RuntimeError("wrong client message received") c.close() await c.wait_closed() return while True: choice_message = ChoiceMessage(random.choice(message.items)) try: await client.send(choice_message) except darkriftpy.ConnectionClosedError: print(f"the client({c.connection_id}) has been disconnected") await c.wait_closed() return await asyncio.sleep(1) async def main(): async with darkriftpy.serve(handle_client, "127.0.0.1", 4296, 4296) as server: await asyncio.Future() if __name__ == "__main__": asyncio.run(main()) ">
import asyncio
import random
from collections.abc import AsyncIterator

import darkriftpy
from darkriftpy.types import int32


messages = darkriftpy.MessageContainer()


@messages.add
class ChooseMessage(darkriftpy.Message, tag=1):
    items: list[int32]


@messages.add
class ChoiceMessage(darkriftpy.Message, tag=2):
    item: int32


class Client:
    def __init__(
        self, client: darkriftpy.DarkriftClient, messages: darkriftpy.MessageContainer
    ):
        self._client = client
        self._messages = messages

    async def recv(self) -> darkriftpy.DarkriftMessage:
        message = await self._client.recv()

        try:
            return self._messages.convert(message)
        except RuntimeError:
            # just return the message as is
            pass

        return message

    async def send(
        self, message: darkriftpy.DarkriftMessage, reliable: bool = True
    ) -> None:
        await self._client.send(message, reliable)

    def __aiter__(self) -> AsyncIterator[darkriftpy.DarkriftMessage]:
        return self

    async def __anext__(self) -> darkriftpy.DarkriftMessage:
        """
        Returns the next message.

        Stop iteration when the connection is closed.

        """
        try:
            return await self.recv()
        except darkrift.ConnectionClosedError:
            raise StopAsyncIteration()


async def handle_client(c: darkriftpy.DarkriftClient) -> None:
    client = Client(c, messages)

    message = await client.recv()
    if not isinstance(message, ChooseMessage):
        raise RuntimeError("wrong client message received")

        c.close()
        await c.wait_closed()
        return

    while True:
        choice_message = ChoiceMessage(random.choice(message.items))

        try:
            await client.send(choice_message)
        except darkriftpy.ConnectionClosedError:
            print(f"the client({c.connection_id}) has been disconnected")
            await c.wait_closed()
            return

        await asyncio.sleep(1)


async def main():
    async with darkriftpy.serve(handle_client, "127.0.0.1", 4296, 4296) as server:
        await asyncio.Future()


if __name__ == "__main__":
    asyncio.run(main())

TODO

[ ] - Add multiprocessing support to improve performance and scalability (Fork + Multiplexing I/O).
[ ] - Cover the codebase with tests ;).

Owner
Anton Dobryakov
Anton Dobryakov
An open source algorithm and dataset for finding poop in pictures.

The shitspotter module is where I will be work on the "shitspotter" poop-detection algorithm and dataset. The primary goal of this work is to allow for the creation of a phone app that finds where yo

Jon Crall 29 Nov 29, 2022
Leveraging Unique CPS Properties to Design Better Privacy-Enhancing Algorithms

Differential_Privacy_CPS Python implementation of the research paper Leveraging Unique CPS Properties to Design Better Privacy-Enhancing Algorithms Re

Shubhesh Anand 2 Dec 14, 2022
Algorithm for Cutting Stock Problem using Google OR-Tools. Link to the tool:

Cutting Stock Problem Cutting Stock Problem (CSP) deals with planning the cutting of items (rods / sheets) from given stock items (which are usually o

Emad Ehsan 87 Dec 31, 2022
Infomap is a network clustering algorithm based on the Map equation.

Infomap Infomap is a network clustering algorithm based on the Map equation. For detailed documentation, see mapequation.org/infomap. For a list of re

347 Dec 23, 2022
Pathfinding algorithm based on A*

Pathfinding V1 What is pathfindingV1 ? This program is my very first path finding program, using python and turtle for graphic rendering. How is it wo

Yan'D 6 May 26, 2022
Python implementation of Aho-Corasick algorithm for string searching

Python implementation of Aho-Corasick algorithm for string searching

Daniel O'Sullivan 1 Dec 31, 2021
Our implementation of Gillespie's Stochastic Simulation Algorithm (SSA)

SSA Our implementation of Gillespie's Stochastic Simulation Algorithm (SSA) Requirements python =3.7 numpy pandas matplotlib pyyaml Command line usag

Anoop Lab 1 Jan 27, 2022
frePPLe - open source supply chain planning

frePPLe Open source supply chain planning FrePPLe is an easy-to-use and easy-to-implement open source advanced planning and scheduling tool for manufa

frePPLe 385 Jan 06, 2023
Classic algorithms including Fizz Buzz, Bubble Sort, the Fibonacci Sequence, a Sudoku solver, and more.

Algorithms Classic algorithms including Fizz Buzz, Bubble Sort, the Fibonacci Sequence, a Sudoku solver, and more. Algorithm Complexity Time and Space

1 Jan 14, 2022
Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life.

Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life. The algorithm is designed to replicate the natural selection process to carry generatio

Mahdi Hassanzadeh 4 Dec 24, 2022
The test data, code and detailed description of the AW t-SNE algorithm

AW-t-SNE The test data, code and result of the AW t-SNE algorithm Structure of the folder Datasets: This folder contains two datasets, the MNIST datas

1 Mar 09, 2022
Cormen-Lib - An academic tool for data structures and algorithms courses

The Cormen-lib module is an insular data structures and algorithms library based on the Thomas H. Cormen's Introduction to Algorithms Third Edition. This library was made specifically for administeri

Cormen Lib 12 Aug 18, 2022
A raw implementation of the nearest insertion algorithm to resolve TSP problems in a TXT format.

TSP-Nearest-Insertion A raw implementation of the nearest insertion algorithm to resolve TSP problems in a TXT format. Instructions Load a txt file wi

sjas_Phantom 1 Dec 02, 2021
Python based framework providing a simple and intuitive framework for algorithmic trading

Harvest is a Python based framework providing a simple and intuitive framework for algorithmic trading. Visit Harvest's website for details, tutorials

100 Jan 03, 2023
Implements (high-dimenstional) clustering algorithm

Description Implements (high-dimenstional) clustering algorithm described in https://arxiv.org/pdf/1804.02624.pdf Dependencies python3 pytorch (=0.4)

Eric Elmoznino 5 Dec 27, 2022
marching rectangles algorithm in python with clean code.

Marching Rectangles marching rectangles algorithm in python with clean code. Tools Python 3 EasyDraw Creators Mohammad Dori Run the Code Installation

Mohammad Dori 3 Jul 15, 2022
Algorithms-in-Python - Programs related to DSA in Python for placement practice

Algorithms-in-Python Programs related to DSA in Python for placement practice CO

MAINAK CHAUDHURI 2 Feb 02, 2022
Implemented page rank program

Page Rank Implemented page rank program based on fact that a website is more important if it is linked to by other important websites using recursive

Vaibhaw 6 Aug 24, 2022
A* (with 2 heuristic functions), BFS , DFS and DFS iterativeA* (with 2 heuristic functions), BFS , DFS and DFS iterative

Descpritpion This project solves the Taquin game (jeu de taquin) problem using different algorithms : A* (with 2 heuristic functions), BFS , DFS and D

Ayari Ahmed 3 May 09, 2022
N Queen Problem using Genetic Algorithm

The N Queen is the problem of placing N chess queens on an N×N chessboard so that no two queens attack each other.

Mahdi Hassanzadeh 2 Nov 11, 2022