Python module for machine learning time series:

Overview

Travis Pypi PythonVersion CircleCI Coveralls Downloads

seglearn

Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extraction, feature processing, and final estimator. Seglearn provides a flexible approach to multivariate time series and related contextual (meta) data for classification, regression, and forecasting problems. Support and examples are provided for learning time series with classical machine learning and deep learning models. It is compatible with scikit-learn.

Documentation

Installation documentation, API documentation, and examples can be found on the documentation.

Dependencies

seglearn is tested to work under Python 3.5. The dependency requirements are based on the last scikit-learn release:

  • scipy(>=0.17.0)
  • numpy(>=1.11.0)
  • scikit-learn(>=0.21.3)

Additionally, to run the examples, you need:

  • matplotlib(>=2.0.0)
  • keras (>=2.1.4) for the neural network examples
  • pandas

In order to run the test cases, you need:

  • pytest

The neural network examples were tested on keras using the tensorflow-gpu backend, which is recommended.

Installation

seglearn-learn is currently available on the PyPi's repository and you can install it via pip:

pip install -U seglearn

or if you use python3:

pip3 install -U seglearn

If you prefer, you can clone it and run the setup.py file. Use the following commands to get a copy from GitHub and install all dependencies:

git clone https://github.com/dmbee/seglearn.git
cd seglearn
pip install .

Or install using pip and GitHub:

pip install -U git+https://github.com/dmbee/seglearn.git

Testing

After installation, you can use pytest to run the test suite from seglearn's root directory:

pytest

Change Log

Version history can be viewed in the Change Log.

Development

The development of this scikit-learn-contrib is in line with the one of the scikit-learn community. Therefore, you can refer to their Development Guide.

Please submit new pull requests on the dev branch with unit tests and an example to demonstrate any new functionality / api changes.

Citing seglearn

If you use seglearn in a scientific publication, we would appreciate citations to the following paper:

@article{arXiv:1803.08118,
author  = {David Burns, Cari Whyne},
title   = {Seglearn: A Python Package for Learning Sequences and Time Series},
journal = {arXiv},
year    = {2018},
url     = {https://arxiv.org/abs/1803.08118}
}

If you use the seglearn test data in a scientific publication, we would appreciate citations to the following paper:

@article{arXiv:1802.01489,
author  = {David Burns, Nathan Leung, Michael Hardisty, Cari Whyne, Patrick Henry, Stewart McLachlin},
title   = {Shoulder Physiotherapy Exercise Recognition: Machine Learning the Inertial Signals from a Smartwatch},
journal = {arXiv},
year    = {2018},
url     = {https://arxiv.org/abs/1802.01489}
}
Owner
David Burns
Orthopaedic Surgery Resident PhD Candidate, Biomedical Engineering Sunnybrook Research Institute University of Toronto, Canada
David Burns
Markov bot - A Writing bot based on Markov Chain for Data Structure Lab

基于马尔可夫链的写作机器人 前端 用html/css完成 Demo展示(已给出文本的相应展示) 用户提供相关的语料库后训练的成果 后端 要完成的几个接口 解析文

DysprosiumDy 9 May 05, 2022
Cohort Intelligence used to solve various mathematical functions

Cohort-Intelligence-for-Mathematical-Functions About Cohort Intelligence : Cohort Intelligence ( CI ) is an optimization technique. It attempts to mod

Aayush Khandekar 2 Oct 25, 2021
A machine learning project that predicts the price of used cars in the UK

Car Price Prediction Image Credit: AA Cars Project Overview Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup. Cleaned t

Victor Umunna 7 Oct 13, 2022
A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al.

pyUpSet A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al. Contents Purpose How to install How it work

288 Jan 04, 2023
A classification model capable of accurately predicting the price of secondhand cars

The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this

Akarsh Singh 2 Sep 13, 2022
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
This repo includes some graph-based CTR prediction models and other representative baselines.

Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F

Big Data and Multi-modal Computing Group, CRIPAC 47 Dec 30, 2022
XManager: A framework for managing machine learning experiments 🧑‍🔬

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction

DeepMind 620 Dec 27, 2022
Avocado hass time series vs predict price

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới https://avocado-hass.h

hieulmsc 3 Dec 18, 2021
Pragmatic AI Labs 421 Dec 31, 2022
Upgini : data search library for your machine learning pipelines

Automated data search library for your machine learning pipelines → find & deliver relevant external data & features to boost ML accuracy :chart_with_upwards_trend:

Upgini 175 Jan 08, 2023
Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

Payment-Date-Prediction Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

15 Sep 09, 2022
Provide an input CSV and a target field to predict, generate a model + code to run it.

automl-gs Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learn

Max Woolf 1.8k Jan 04, 2023
AP1 Transcription Factor Binding Site Prediction

A machine learning project that predicted binding sites of AP1 transcription factor, using ChIP-Seq data and local DNA shape information.

1 Jan 21, 2022
A collection of Scikit-Learn compatible time series transformers and tools.

tsfeast A collection of Scikit-Learn compatible time series transformers and tools. Installation Create a virtual environment and install: From PyPi p

Chris Santiago 0 Mar 30, 2022
Free MLOps course from DataTalks.Club

MLOps Zoomcamp Our MLOps Zoomcamp course Sign up here: https://airtable.com/shrCb8y6eTbPKwSTL (it's not automated, you will not receive an email immed

DataTalksClub 4.6k Dec 31, 2022
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 07, 2023
Implementations of Machine Learning models, Regularizers, Optimizers and different Cost functions.

Linear Models Implementations of LinearRegression, LassoRegression and RidgeRegression with appropriate Regularizers and Optimizers. Linear Regression

Keivan Ipchi Hagh 1 Nov 22, 2021
A high performance and generic framework for distributed DNN training

BytePS BytePS is a high performance and general distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on eith

Bytedance Inc. 3.3k Dec 28, 2022
ZenML 🙏: MLOps framework to create reproducible ML pipelines for production machine learning.

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. It has a simple, flexible syntax, is cloud and tool agnostic, and has interfaces/abstraction

ZenML 2.6k Jan 08, 2023