A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

Overview

Machine Learning Mindmap / Cheatsheet

A Mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

Overview

Machine Learning is a subfield of computer science that gives computers the ability to learn without being explicitly programmed. It explores the study and construction of algorithms that can learn from and make predictions on data.

Machine Learning is as fascinating as it is broad in scope. It spans over multiple fields in Mathematics, Computer Science, and Neuroscience. This is an attempt to summarize this enormous field in one .PDF file.

Download

Download the PDF here:

https://github.com/dformoso/machine-learning-mindmap/blob/master/Machine%20Learning.pdf

Same, but with a white background:

https://github.com/dformoso/machine-learning-mindmap/blob/master/Machine%20Learning%20-%20White%20BG.pdf

I've built the mindmap with MindNode for Mac. https://mindnode.com

Companion Notebook

This Mindmap/Cheatsheet has a companion Jupyter Notebook that runs through most of the Data Science steps that can be found at the following link:

https://github.com/dformoso/sklearn-classification

Mindmap on Deep Learning

Here's another mindmap which focuses only on Deep Learning

https://github.com/dformoso/deeplearning-mindmap

1. Process

The Data Science it's not a set-and-forget effort, but a process that requires design, implementation and maintenance. The PDF contains a quick overview of what's involved. Here's a quick screenshot.

alt text

2. Data Processing

First, we'll need some data. We must find it, collect it, clean it, and about 5 other steps. Here's a sample of what's required.

alt text

3. Mathematics

Machine Learning is a house built on Math bricks. Browse through the most common components, and send your feedback if you see something missing.

alt text

4. Concepts

A partial list of the types, categories, approaches, libraries, and methodology.

alt text

5. Models

A sampling of the most popular models. Send your comments to add more.

alt text

References

I'm planning to build a more complete list of references in the future. For now, these are some of the sources I've used to create this Mindmap.

 Stanford and Oxford Lectures. CS20SI, CS224d.
> Books: 
  > Deep Learning - Goodfellow. 
  > Pattern Recognition and Machine Learning - Bishop. 
  > The Elements of Statistical Learning - Hastie.
- Colah's Blog. http://colah.github.io
- Kaggle Notebooks.
- Tensorflow Documentation pages.
- Google Cloud Data Engineer certification materials.
- Multiple Wikipedia articles.

About Me

Twitter:

https://twitter.com/danielmartinezf

Linkedin:

https://www.linkedin.com/in/danielmartinezformoso/

Email:

[email protected]

Owner
Daniel Formoso
Machine Learning Cloud Consultant at Google
Daniel Formoso
Predict profitability of trades based on indicator buy / sell signals

Predict profitability of trades based on indicator buy / sell signals Trade profitability analysis for trades based on various indicators signals: MAC

Tomasz Porzycki 1 Dec 15, 2021
Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

The Learning Machines 1 Jan 16, 2022
Probabilistic time series modeling in Python

GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (

Amazon Web Services - Labs 3.3k Jan 03, 2023
Distributed scikit-learn meta-estimators in PySpark

sk-dist: Distributed scikit-learn meta-estimators in PySpark What is it? sk-dist is a Python package for machine learning built on top of scikit-learn

Ibotta 282 Dec 09, 2022
Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions.

Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions. There is a lot more info if you head over to the documentation. You can also take a look at

Better 240 Dec 26, 2022
LinearRegression2 Tvads and CarSales

LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i

Ashish Kumar Yadav 1 Dec 29, 2021
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your

BDFD 6 Nov 05, 2022
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python

BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python. Some of the algorithms included are mor

Jared M. Smith 40 Aug 26, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
Microsoft 5.6k Jan 07, 2023
YouTube Spam Detection with python

YouTube Spam Detection This code deletes spam comment on youtube videos based on two characteristics (currently) If the author of the comment has a se

MohamadReza Taalebi 5 Sep 27, 2022
neurodsp is a collection of approaches for applying digital signal processing to neural time series

neurodsp is a collection of approaches for applying digital signal processing to neural time series, including algorithms that have been proposed for the analysis of neural time series. It also inclu

NeuroDSP 224 Dec 02, 2022
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
Gaussian Process Optimization using GPy

End of maintenance for GPyOpt Dear GPyOpt community! We would like to acknowledge the obvious. The core team of GPyOpt has moved on, and over the past

Sheffield Machine Learning Software 847 Dec 19, 2022
Automated Machine Learning with scikit-learn

auto-sklearn auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. Find the documentation here

AutoML-Freiburg-Hannover 6.7k Jan 07, 2023
Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies

Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies. We have amassed a dataset of millions of rows of high-frequency market data dating back to 2018 w

Panagiotis (Panos) Mavritsakis 4 Sep 22, 2022
Predict the demand for electricity (R) - FRENCH

06.demand-electricity Predict the demand for electricity (R) - FRENCH Prédisez la demande en électricité Prérequis Pour effectuer ce projet, vous devr

1 Feb 13, 2022
Toolss - Automatic installer of hacking tools (ONLY FOR TERMUKS!)

Tools Автоматический установщик хакерских утилит (ТОЛЬКО ДЛЯ ТЕРМУКС!) Оригиналь

14 Jan 05, 2023
MLFlow in a Dockercontainer based on Azurite and Postgres

mlflow-azurite-postgres docker This is a MLFLow image which works with a postgres DB and a local Azure Blob Storage Instance (Azurite). This image is

2 May 29, 2022