A library for uncertainty representation and training in neural networks.

Related tags

Deep Learningenn
Overview

Epistemic Neural Networks

A library for uncertainty representation and training in neural networks.

Introduction

Many applications in deep learning requires or benefit from going beyond a point estimte and representing uncertainty about the model. The coherent use of Bayes’ rule and probability theory are the gold standard for updating beliefs and estimating uncertainty. But exact computation quickly becomes infeasible for even simple problems. Modern machine learning has developed an effective toolkit for learning in high-dimensional using a simple and coherent convention. Epistemic neural network (ENN) is a library that provides a similarly simple and coherent convention for defining and training neural networks that represent uncertainty over a hypothesis class of models.

Technical overview

In a supervised setting, For input x_i ∈ X and outputs y_i ∈ Y a point estimate f_θ(x) is trained by fitting the observed data D = {(xi, yi) for i = 1, ..., N} by minimizing a loss function l(θ, D) ∈ R. In epistemic neural networks we introduce the concept of an epistemic index z ∈ I ⊆ R^{n_z} distributed according to some reference distribution p_z(·). An augmented epistemic function approximator then takes the form f_θ(x, z); where the function class fθ(·, z) is a neural network. The index z allows unambiguous identification of a corresponding function value and sampling z corresponds to sampling from the hypothesis class of functions.

On some level, ENNs are purely a notational convenience and most existing approaches to dealing with uncertainty in deep learning can be rephrased in this way. For example, an ensemble of point estimates {f_θ1, ..., f_θK } can be viewed as an ENN with θ = (θ1, .., θK), z ∈ {1, .., K}, and f_θ(x, z) := f_θz(x). However, this simplicity hides a deeper insight: that the process of epistemic update itself can be tackled through the tools of machine learning typically reserved for point estimates, through the addition of this epistemic index. Further, since these machine learning tools were explicitly designed to scale to large and complex problems, they might provide tractable approximations to large scale Bayesian inference even where the exact computations are intractable.

For a more comprehensive overview, see the accompanying paper.

Reproducing NeurIPS experiments

To reproduce the experiments from our paper please see experiments/neurips_2021.

Getting started

You can get started in our colab tutorial without installing anything on your machine.

Installation

We have tested ENN on Python 3.7. To install the dependencies:

  1. Optional: We recommend using a Python virtual environment to manage your dependencies, so as not to clobber your system installation:

    python3 -m venv enn
    source enn/bin/activate
    pip install --upgrade pip setuptools
  2. Install ENN directly from github:

    pip install git+https://github.com/deepmind/enn
  3. Test that you can load ENN by training a simple ensemble ENN.

    from acme.utils.loggers.terminal import TerminalLogger
    
    from enn import losses
    from enn import networks
    from enn import supervised
    from enn.supervised import regression_data
    import optax
    
    # A small dummy dataset
    dataset = regression_data.make_dataset()
    
    # Logger
    logger = TerminalLogger('supervised_regression')
    
    # ENN
    enn = networks.MLPEnsembleMatchedPrior(
        output_sizes=[50, 50, 1],
        num_ensemble=10,
    )
    
    # Loss
    loss_fn = losses.average_single_index_loss(
        single_loss=losses.L2LossWithBootstrap(),
        num_index_samples=10
    )
    
    # Optimizer
    optimizer = optax.adam(1e-3)
    
    # Train the experiment
    experiment = supervised.Experiment(
        enn, loss_fn, optimizer, dataset, seed=0, logger=logger)
    experiment.train(FLAGS.num_batch)

More examples can be found in the colab tutorial.

  1. Optional: run the tests by executing ./test.sh from ENN root directory.

Citing

If you use ENN in your work, please cite the accompanying paper:

@inproceedings{,
    title={Epistemic Neural Networks},
    author={Ian Osband, Zheng Wen, Mohammad Asghari, Morteza Ibrahimi, Xiyuan Lu, Benjamin Van Roy},
    booktitle={arxiv},
    year={2021},
    url={https://arxiv.org/abs/2107.08924}
}
Owner
DeepMind
DeepMind
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives

Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers

Roi Naveiro 2 Nov 11, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

13 Jan 06, 2023
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
Source code for "OmniPhotos: Casual 360° VR Photography"

OmniPhotos: Casual 360° VR Photography Project Page | Video | Paper | Demo | Data This repository contains the source code for creating and viewing Om

Christian Richardt 144 Dec 30, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Hailo 50 Dec 07, 2022
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022