Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Overview

Riskfolio-Lib

Quantitative Strategic Asset Allocation, Easy for Everyone.

Buy Me a Coffee at ko-fi.com

GitHub stars Downloads Documentation Status GitHub license Binder

Description

Riskfolio-Lib is a library for making quantitative strategic asset allocation or portfolio optimization in Python made in Peru 🇵🇪 . Its objective is to help students, academics and practitioners to build investment portfolios based on mathematically complex models with low effort. It is built on top of cvxpy and closely integrated with pandas data structures.

Some of key functionalities that Riskfolio-Lib offers:

  • Mean Risk and Logarithmic Mean Risk (Kelly Criterion) Portfolio Optimization with 4 objective functions:

    • Minimum Risk.
    • Maximum Return.
    • Maximum Utility Function.
    • Maximum Risk Adjusted Return Ratio.
  • Mean Risk and Logarithmic Mean Risk (Kelly Criterion) Portfolio Optimization with 13 convex risk measures:

    • Standard Deviation.
    • Semi Standard Deviation.
    • Mean Absolute Deviation (MAD).
    • First Lower Partial Moment (Omega Ratio).
    • Second Lower Partial Moment (Sortino Ratio).
    • Conditional Value at Risk (CVaR).
    • Entropic Value at Risk (EVaR).
    • Worst Case Realization (Minimax Model).
    • Maximum Drawdown (Calmar Ratio) for uncompounded cumulative returns.
    • Average Drawdown for uncompounded cumulative returns.
    • Conditional Drawdown at Risk (CDaR) for uncompounded cumulative returns.
    • Entropic Drawdown at Risk (EDaR) for uncompounded cumulative returns.
    • Ulcer Index for uncompounded cumulative returns.
  • Risk Parity Portfolio Optimization with 10 convex risk measures:

    • Standard Deviation.
    • Semi Standard Deviation.
    • Mean Absolute Deviation (MAD).
    • First Lower Partial Moment (Omega Ratio).
    • Second Lower Partial Moment (Sortino Ratio).
    • Conditional Value at Risk (CVaR).
    • Entropic Value at Risk (EVaR).
    • Conditional Drawdown at Risk (CDaR) for uncompounded cumulative returns.
    • Entropic Drawdown at Risk (EDaR) for uncompounded cumulative returns.
    • Ulcer Index for uncompounded cumulative returns.
  • Hierarchical Clustering Portfolio Optimization: Hierarchical Risk Parity (HRP) and Hierarchical Equal Risk Contribution (HERC) with 22 risk measures:

    • Standard Deviation.
    • Variance.
    • Semi Standard Deviation.
    • Mean Absolute Deviation (MAD).
    • First Lower Partial Moment (Omega Ratio).
    • Second Lower Partial Moment (Sortino Ratio).
    • Value at Risk (VaR).
    • Conditional Value at Risk (CVaR).
    • Entropic Value at Risk (EVaR).
    • Worst Case Realization (Minimax Model).
    • Maximum Drawdown (Calmar Ratio) for compounded and uncompounded cumulative returns.
    • Average Drawdown for compounded and uncompounded cumulative returns.
    • Drawdown at Risk (DaR) for compounded and uncompounded cumulative returns.
    • Conditional Drawdown at Risk (CDaR) for compounded and uncompounded cumulative returns.
    • Entropic Drawdown at Risk (EDaR) for compounded and uncompounded cumulative returns.
    • Ulcer Index for compounded and uncompounded cumulative returns.
  • Nested Clustered Optimization (NCO) with four objective functions and the available risk measures to each objective:

    • Minimum Risk.
    • Maximum Return.
    • Maximum Utility Function.
    • Equal Risk Contribution.
  • Worst Case Mean Variance Portfolio Optimization.

  • Relaxed Risk Parity Portfolio Optimization.

  • Portfolio optimization with Black Litterman model.

  • Portfolio optimization with Risk Factors model.

  • Portfolio optimization with Black Litterman Bayesian model.

  • Portfolio optimization with Augmented Black Litterman model.

  • Portfolio optimization with constraints on tracking error and turnover.

  • Portfolio optimization with short positions and leveraged portfolios.

  • Portfolio optimization with constraints on number of assets and number of effective assets.

  • Tools to build efficient frontier for 13 risk measures.

  • Tools to build linear constraints on assets, asset classes and risk factors.

  • Tools to build views on assets and asset classes.

  • Tools to build views on risk factors.

  • Tools to calculate risk measures.

  • Tools to calculate risk contributions per asset.

  • Tools to calculate uncertainty sets for mean vector and covariance matrix.

  • Tools to calculate assets clusters based on codependence metrics.

  • Tools to estimate loadings matrix (Stepwise Regression and Principal Components Regression).

  • Tools to visualizing portfolio properties and risk measures.

  • Tools to build reports on Jupyter Notebook and Excel.

  • Option to use commercial optimization solver like MOSEK or GUROBI for large scale problems.

Documentation

Online documentation is available at Documentation.

The docs include a tutorial with examples that shows the capacities of Riskfolio-Lib.

Dependencies

Riskfolio-Lib supports Python 3.7+.

Installation requires:

Installation

The latest stable release (and older versions) can be installed from PyPI:

pip install riskfolio-lib

Citing

If you use Riskfolio-Lib for published work, please use the following BibTeX entrie:

@misc{riskfolio,
      author = {Dany Cajas},
      title = {Riskfolio-Lib (2.0.0)},
      year  = {2021},
      url   = {https://github.com/dcajasn/Riskfolio-Lib},
      }

Development

Riskfolio-Lib development takes place on Github: https://github.com/dcajasn/Riskfolio-Lib

RoadMap

The plan for this module is to add more functions that will be very useful to asset managers.

  • Add more functions based on suggestion of users.
Owner
Riskfolio
Finance and Python lover, looking for job opportunities in quantitative finance, investments and risk management.
Riskfolio
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

DI-smartcross DI-smartcross - Decision Intelligence Platform for Traffic Crossin

OpenDILab 213 Jan 02, 2023
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
Inflated i3d network with inception backbone, weights transfered from tensorflow

I3D models transfered from Tensorflow to PyTorch This repo contains several scripts that allow to transfer the weights from the tensorflow implementat

Yana 479 Dec 08, 2022
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
A Protein-RNA Interface Predictor Based on Semantics of Sequences

PRIP PRIP:A Protein-RNA Interface Predictor Based on Semantics of Sequences installation gensim==3.8.3 matplotlib==3.1.3 xgboost==1.3.3 prettytable==2

李优 0 Mar 25, 2022
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022