Selfplay In MultiPlayer Environments

Related tags

Deep LearningSIMPLE
Overview

Contributors Forks Stargazers Issues MIT License LinkedIn


Logo

Selfplay In MultiPlayer Environments
· Report Bug · Request Feature


Table of Contents

  1. About The Project
  2. Getting Started
  3. Tutorial
  4. Roadmap
  5. Contributing
  6. License
  7. Contact
  8. Acknowledgements


About The Project

SIMPLE Diagram

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

It implements Proximal Policy Optimisation (PPO), with a built-in wrapper around the multiplayer environments that handles the loading and action-taking of opponents in the environment. The wrapper delays the reward back to the PPO agent, until all opponents have taken their turn. In essence, it converts the multiplayer environment into a single-player environment that is constantly evolving as new versions of the policy network are added to the network bank.

To learn more, check out the accompanying blog post.

This guide explains how to get started with the repo, add new custom environments and tune the hyperparameters of the system.

Have fun!


Getting Started

To get a local copy up and running, follow these simple steps.

Prerequisites

Install Docker and Docker Compose to make use of the docker-compose.yml file

Installation

  1. Clone the repo
    git clone https://github.com/davidADSP/SIMPLE.git
    cd SIMPLE
  2. Build the image and 'up' the container.
    docker-compose up -d
  3. Choose an environment to install in the container (tictactoe, connect4, sushigo and butterfly are currently implemented)
    bash ./scripts/install_env.sh sushigo

Tutorial

This is a quick tutorial to allow you to start using the two entrypoints into the codebase: test.py and train.py.

TODO - I'll be adding more substantial documentation for both of these entrypoints in due course! For now, descriptions of each command line argument can be found at the bottom of the files themselves.


Quickstart

test.py

This entrypoint allows you to play against a trained AI, pit two AIs against eachother or play against a baseline random model.

For example, try the following command to play against a baseline random model in the Sushi Go environment.

docker-compose exec app python3 test.py -d -g 1 -a base base human -e sushigo 

train.py

This entrypoint allows you to start training the AI using selfplay PPO. The underlying PPO engine is from the Stable Baselines package.

For example, you can start training the agent to learn how to play SushiGo with the following command:

docker-compose exec app python3 train.py -r -e sushigo 

After 30 or 40 iterations the process should have achieved above the default threshold score of 0.2 and will output a new best_model.zip to the /zoo/sushigo folder.

Training runs until you kill the process manually (e.g. with Ctrl-C), so do that now.

You can now use the test.py entrypoint to play 100 games silently between the current best_model.zip and the random baselines model as follows:

docker-compose exec app python3 test.py -g 100 -a best_model base base -e sushigo 

You should see that the best_model scores better than the two baseline model opponents.

Played 100 games: {'best_model_btkce': 31.0, 'base_sajsi': -15.5, 'base_poqaj': -15.5}

You can continue training the agent by dropping the -r reset flag from the train.py entrypoint arguments - it will just pick up from where it left off.

docker-compose exec app python3 train.py -e sushigo 

Congratulations, you've just completed one training cycle for the game Sushi Go! The PPO agent will now have to work out a way to beat the model it has just created...


Tensorboard

To monitor training, you can start Tensorboard with the following command:

bash scripts/tensorboard.sh

Navigate to localhost:6006 in a browser to view the output.

In the /zoo/pretrained/ folder there is a pre-trained //best_model.zip for each game, that can be copied up a directory (e.g. to /zoo/sushigo/best_model.zip) if you want to test playing against a pre-trained agent right away.


Custom Environments

You can add a new environment by copying and editing an existing environment in the /environments/ folder.

For the environment to work with the SIMPLE self-play wrapper, the class must contain the following methods (expanding on the standard methods from the OpenAI Gym framework):

__init__

In the initiation method, you need to define the usual action_space and observation_space, as well as two additional variables:

  • n_players - the number of players in the game
  • current_player_num - an integer that tracks which player is currently active  

step

The step method accepts an action from the current active player and performs the necessary steps to update the game environment. It should also it should update the current_player_num to the next player, and check to see if an end state of the game has been reached.

reset

The reset method is called to reset the game to the starting state, ready to accept the first action.

render

The render function is called to output a visual or human readable summary of the current game state to the log file.

observation

The observation function returns a numpy array that can be fed as input to the PPO policy network. It should return a numeric representation of the current game state, from the perspective of the current player, where each element of the array is in the range [-1,1].

legal_actions

The legal_actions function returns a numpy vector of the same length as the action space, where 1 indicates that the action is valid and 0 indicates that the action is invalid.

Please refer to existing environments for examples of how to implement each method.

You will also need to add the environment to the two functions in /utils/register.py - follow the existing examples of environments for the structure.


Parallelisation

The training process can be parallelised using MPI across multiple cores.

For example to run 10 parallel threads that contribute games to the current iteration, you can simply run:

docker-compose exec app mpirun -np 10 python3 train.py -e sushigo 

Roadmap

See the open issues for a list of proposed features (and known issues).


Contributing

Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the GPL-3.0. See LICENSE for more information.


Contact

David Foster - @davidADSP - [email protected]

Project Link: https://github.com/davidADSP/SIMPLE


Acknowledgements

There are many repositories and blogs that have helped me to put together this repository. One that deserves particular acknowledgement is David's Ha's Slime Volleyball Gym, that also implements multi-agent reinforcement learning. It has helped to me understand how to adapt the callback function to a self-play setting and also to how to implement MPI so that the codebase can be highly parallelised. Definitely worth checking out!


A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture YouRefIt: Embodied Reference Understanding with Language and Gesture by Yixin Che

16 Jul 11, 2022
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
A developer interface for creating Chat AIs for the Chai app.

ChaiPy A developer interface for creating Chat AIs for the Chai app. Usage Local development A quick start guide is available here, with a minimal exa

Chai 28 Dec 28, 2022
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

COCON_ICLR2021 This is our Pytorch implementation of COCON. CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021) Alvin Chan, Y

alvinchangw 79 Dec 18, 2022
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
Sentiment analysis translations of the Bhagavad Gita

Sentiment and Semantic Analysis of Bhagavad Gita Translations It is well known that translations of songs and poems not only breaks rhythm and rhyming

Machine learning and Bayesian inference @ UNSW Sydney 3 Aug 01, 2022
NumPy로 구현한 딥러닝 라이브러리입니다. (자동 미분 지원)

Deep Learning Library only using NumPy 본 레포지토리는 NumPy 만으로 구현한 딥러닝 라이브러리입니다. 자동 미분이 구현되어 있습니다. 자동 미분 자동 미분은 미분을 자동으로 계산해주는 기능입니다. 아래 코드는 자동 미분을 활용해 역전파

조준희 17 Aug 16, 2022
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022