[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator

Overview

involution

Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVPR'21)

By Duo Li, Jie Hu, Changhu Wang, Xiangtai Li, Qi She, Lei Zhu, Tong Zhang, and Qifeng Chen

TL; DR. involution is a general-purpose neural primitive that is versatile for a spectrum of deep learning models on different vision tasks. involution bridges convolution and self-attention in design, while being more efficient and effective than convolution, simpler than self-attention in form.

Getting Started

This repository is fully built upon the OpenMMLab toolkits. For each individual task, the config and model files follow the same directory organization as mmcls, mmdet, and mmseg respectively, so just copy-and-paste them to the corresponding locations to get started.

For example, in terms of evaluating detectors

git clone https://github.com/open-mmlab/mmdetection # and install

cp det/mmdet/models/backbones/* mmdetection/mmdet/models/backbones
cp det/mmdet/models/necks/* mmdetection/mmdet/models/necks
cp det/mmdet/models/utils/* mmdetection/mmdet/models/utils

cp det/configs/_base_/models/* mmdetection/mmdet/configs/_base_/models
cp det/configs/_base_/schedules/* mmdetection/mmdet/configs/_base_/schedules
cp det/configs/involution mmdetection/mmdet/configs -r

cd mmdetection
# evaluate checkpoints
bash tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]

For more detailed guidance, please refer to the original mmcls, mmdet, and mmseg tutorials.

Currently, we provide an memory-efficient implementation of the involuton operator based on CuPy. Please install this library in advance. A customized CUDA kernel would bring about further acceleration on the hardware. Any contribution from the community regarding this is welcomed!

Model Zoo

The parameters/FLOPs↓ and performance↑ compared to the convolution baselines are marked in the parentheses. Part of these checkpoints are obtained in our reimplementation runs, whose performance may show slight differences with those reported in our paper. Models are trained with 64 GPUs on ImageNet, 8 GPUs on COCO, and 4 GPUs on Cityscapes.

Image Classification on ImageNet

Model Params(M) FLOPs(G) Top-1 (%) Top-5 (%) Config Download
RedNet-26 9.23(32.8%↓) 1.73(29.2%↓) 75.96 93.19 config model | log
RedNet-38 12.39(36.7%↓) 2.22(31.3%↓) 77.48 93.57 config model | log
RedNet-50 15.54(39.5%↓) 2.71(34.1%↓) 78.35 94.13 config model | log
RedNet-101 25.65(42.6%↓) 4.74(40.5%↓) 78.92 94.35 config model | log
RedNet-152 33.99(43.5%↓) 6.79(41.4%↓) 79.12 94.38 config model | log

Before finetuning on the following downstream tasks, download the ImageNet pre-trained RedNet-50 weights and set the pretrained argument in det/configs/_base_/models/*.py or seg/configs/_base_/models/*.py to your local path.

Object Detection and Instance Segmentation on COCO

Faster R-CNN

Backbone Neck Style Lr schd Params(M) FLOPs(G) box AP Config Download
RedNet-50-FPN convolution pytorch 1x 31.6(23.9%↓) 177.9(14.1%↓) 39.5(1.8↑) config model | log
RedNet-50-FPN involution pytorch 1x 29.5(28.9%↓) 135.0(34.8%↓) 40.2(2.5↑) config model | log

Mask R-CNN

Backbone Neck Style Lr schd Params(M) FLOPs(G) box AP mask AP Config Download
RedNet-50-FPN convolution pytorch 1x 34.2(22.6%↓) 224.2(11.5%↓) 39.9(1.5↑) 35.7(0.8↑) config model | log
RedNet-50-FPN involution pytorch 1x 32.2(27.1%↓) 181.3(28.5%↓) 40.8(2.4↑) 36.4(1.3↑) config model | log

RetinaNet

Backbone Neck Style Lr schd Params(M) FLOPs(G) box AP Config Download
RedNet-50-FPN convolution pytorch 1x 27.8(26.3%↓) 210.1(12.2%↓) 38.2(1.6↑) config model | log
RedNet-50-FPN involution pytorch 1x 26.3(30.2%↓) 199.9(16.5%↓) 38.2(1.6↑) config model | log

Semantic Segmentation on Cityscapes

Method Backbone Neck Crop Size Lr schd Params(M) FLOPs(G) mIoU Config download
FPN RedNet-50 convolution 512x1024 80000 18.5(35.1%↓) 293.9(19.0%↓) 78.0(3.6↑) config model | log
FPN RedNet-50 involution 512x1024 80000 16.4(42.5%↓) 205.2(43.4%↓) 79.1(4.7↑) config model | log
UPerNet RedNet-50 convolution 512x1024 80000 56.4(15.1%↓) 1825.6(3.6%↓) 80.6(2.4↑) config model | log

Citation

If you find our work useful in your research, please cite:

@InProceedings{Li_2021_CVPR,
author = {Li, Duo and Hu, Jie and Wang, Changhu and Li, Xiangtai and She, Qi and Zhu, Lei and Zhang, Tong and Chen, Qifeng},
title = {Involution: Inverting the Inherence of Convolution for Visual Recognition},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021}
}
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Quantifying Hippocampus Volume for Alzheimer's Progression Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that result

Omar Laham 1 Jan 14, 2022
Pixel-level Crack Detection From Images Of Levee Systems : A Comparative Study

PIXEL-LEVEL CRACK DETECTION FROM IMAGES OF LEVEE SYSTEMS : A COMPARATIVE STUDY G

Manisha Panta 2 Jul 23, 2022
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
CL-Gym: Full-Featured PyTorch Library for Continual Learning

CL-Gym: Full-Featured PyTorch Library for Continual Learning CL-Gym is a small yet very flexible library for continual learning research and developme

Iman Mirzadeh 36 Dec 25, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
[Pedestron] Generalizable Pedestrian Detection: The Elephant In The Room. @ CVPR2021

Pedestron Pedestron is a MMdetection based repository, that focuses on the advancement of research on pedestrian detection. We provide a list of detec

Irtiza Hasan 594 Jan 05, 2023
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022