(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Overview

Dressing in Order (DiOr)

👚 [Paper] 👖 [Webpage] 👗 [Running this code]

The official implementation of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing". by Aiyu Cui, Daniel McKee and Svetlana Lazebnik. (ICCV 2021)

🔔 Updates

Supported Try-on Applications

Supported Editing Applications

More results

Play with demo.ipynb!


Get Started

Please follow the installation instruction in GFLA to install the environment.

Then run

pip install -r requirements.txt

If one wants to run inference only: You can use later version of PyTorch and you don't need to worry about how to install GFLA's cuda functions. Please specify --frozen_flownet.

Dataset

We run experiments on Deepfashion Dataset. To set up the dataset:

  1. Download and unzip img_highres.zip from the deepfashion inshop dataset at $DATA_ROOT
  2. Download the train/val split and pre-processed keypoints annotations from GFLA source or PATN source, and put the .csv and .lst files at $DATA_ROOT.
    • If one wants to extract the keypoints from scratch, please run OpenPose as the pose estimator. Please follow the instruction from PATN for how to generate the keypoints in desired format.
  3. Run python tools/generate_fashion_dataset.py to split the data. (Please specify the $DATA_ROOT accordingly.)
  4. Get human parsing. You can obtain the parsing by either:
    • Run off-the-shelf human parser SCHP (with LIP labels) on $DATA_ROOT/train and $DATA_ROOT/test. Name the output parses folder as $DATA_ROOT/trainM_lip and $DATA_ROOT/testM_lip respectively.
    • Download the preprocessed parsing from here and put it under $DATA_ROOT.
  5. Download standard_test_anns.txt for fast visualization.

After the processing, you should have the dataset folder formatted like:

+ $DATA_ROOT
|   + train (all training images)
|   |   - xxx.jpg
|   |     ...
|   + trainM_lip (human parse of all training images)
|   |   - xxx.png
|   |     ...
|   + test (all test images)
|   |   - xxx.jpg
|   |     ...
|   + testM_lip (human parse of all test images)
|   |   - xxx.png
|   |     ...
|   - fashion-pairs-train.csv (paired poses for training)
|   - fashion-pairs-test.csv (paired poses for test)
|   - fashion-annotation-train.csv (keypoints for training images)
|   - fashion-annotation-test.csv  (keypoints for test images)
|   - train.lst
|   - test.lst
|   - standard_test_anns.txt

Run Demo

Please download the pretrained weights from here and unzip at checkpoints/.

After downloading the pretrained model and setting the data, you can try out our applications in notebook demo.ipynb.

(The checkpoints above are reproduced, so there could be slightly difference in quantitative evaluation from the reported results. To get the original results, please check our released generated images here.)

(DIORv1_64 was trained with a minor difference in code, but it may give better visual results in some applications. If one wants to try it, specify --netG diorv1.)


Training

Warmup the Global Flow Field Estimator

Note, if you don't want to warmup the Global Flow Field Estimator, you can extract its weights from GFLA by downloading the pretrained weights GFLA from here.

Otherwise, run

sh scripts/run_pose.sh

Training

After warming up the flownet, train the pipeline by

sh scripts/run_train.sh

Run tensorboard --logdir checkpoints/$EXP_NAME/train to check tensorboard. Resetting discriminators may help training when it stucks at local minimals.

Evaluations

To download our generated images (256x176 reported in paper): here.

SSIM, FID and LPIPS

To run evaluation (SSIM, FID and LPIPS) on pose transfer task:

sh scripts/run_eval.sh

Cite us!

If you find this work is helpful, please consider to star 🌟 this repo and cite us as

@article{cui2021dressing,
  title={Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing},
  author={Cui, Aiyu and McKee, Daniel and Lazebnik, Svetlana},
  journal={arXiv preprint arXiv:2104.07021},
  year={2021}
}

Acknowledgements

This repository is built up on GFLA, pytorch-CycleGAN-and-pix2pix, PATN and MUNIT. Please be aware of their licenses when using the code.

Thanks a lot for the great work to the pioneer researchers!

🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
DISTIL: Deep dIverSified inTeractIve Learning.

DISTIL: Deep dIverSified inTeractIve Learning. An active/inter-active learning library built on py-torch for reducing labeling costs.

decile-team 110 Dec 06, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
Graduation Project

Gesture-Detection-and-Depth-Estimation This is my graduation project. (1) In this project, I use the YOLOv3 object detection model to detect gesture i

ChaosAT 1 Nov 23, 2021
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
An easy-to-use app to visualise attentions of various VQA models.

Ask Me Anything: A tool for visualising Visual Question Answering (AMA) An easy-to-use app to visualise attentions of various VQA models. Please click

Apoorve 37 Nov 13, 2022
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023