Create matplotlib visualizations from the command-line

Overview

MatplotCLI

Create matplotlib visualizations from the command-line

MatplotCLI is a simple utility to quickly create plots from the command-line, leveraging Matplotlib.

plt "scatter(x,y,5,alpha=0.05); axis('scaled')" < sample.json

plt "hist(x,30)" < sample.json

MatplotCLI accepts both JSON lines and arrays of JSON objects as input. Look at the recipes section to learn how to handle other formats like CSV.

MatplotCLI executes python code (passed as argument) where some handy imports are already done (e.g. from matplotlib.pyplot import *) and where the input JSON data is already parsed and available in variables, making plotting easy. Please refer to matplotlib.pyplot's reference and tutorial for comprehensive documentation about the plotting commands.

Data from the input JSON is made available in the following way. Given the input myfile.json:

{"a": 1, "b": 2}
{"a": 10, "b": 20}
{"a": 30, "c$d": 40}

The following variables are made available:

data = {
    "a": [1, 10, 30],
    "b": [2, 20, None],
    "c_d": [None, None, 40]
}

a = [1, 10, 30]
b = [2, 20, None]
c_d = [None, None, 40]

col_names = ("a", "b", "c_d")

So, for a scatter plot a vs b, you could simply do:

plt "scatter(a,b); title('a vs b')" < myfile.json

Notice that the names of JSON properties are converted into valid Python identifiers whenever they are not (e.g. c$d was converted into c_d).

Execution flow

  1. Import matplotlib and other libs;
  2. Read JSON data from standard input;
  3. Execute user code;
  4. Show the plot.

All steps (except step 3) can be skipped through command-line options.

Installation

The easiest way to install MatplotCLI is from pip:

pip install matplotcli

Recipes and Examples

Plotting JSON data

MatplotCLI natively supports JSON lines:

echo '
    {"a":0, "b":1}
    {"a":1, "b":0}
    {"a":3, "b":3}' |
plt "plot(a,b)"

and arrays of JSON objects:

echo '[
    {"a":0, "b":1},
    {"a":1, "b":0},
    {"a":3, "b":3}]' |
plt "plot(a,b)"

Plotting from a csv

SPyQL is a data querying tool that allows running SQL queries with Python expressions on top of different data formats. Here, SPyQL is reading a CSV file, automatically detecting if there's an header row, the dialect and the data type of each column, and converting the output to JSON lines before handing over to MatplotCLI.

cat my.csv | spyql "SELECT * FROM csv TO json" | plt "plot(x,y)"

Plotting from a yaml/xml/toml

yq converts yaml, xml and toml files to json, allowing to easily plot any of these with MatplotCLI.

cat file.yaml | yq -c | plt "plot(x,y)"
cat file.xml | xq -c | plt "plot(x,y)"
cat file.toml | tomlq -c | plt "plot(x,y)"

Plotting from a parquet file

parquet-tools allows dumping a parquet file to JSON format. jq -c makes sure that the output has 1 JSON object per line before handing over to MatplotCLI.

parquet-tools cat --json my.parquet | jq -c | plt "plot(x,y)"

Plotting from a database

Databases CLIs typically have an option to output query results in CSV format (e.g. psql --csv -c query for PostgreSQL, sqlite3 -csv -header file.db query for SQLite).

Here we are visualizing how much space each namespace is taking in a PostgreSQL database. SPyQL converts CSV output from the psql client to JSON lines, and makes sure there are no more than 10 items, aggregating the smaller namespaces in an All others category. Finally, MatplotCLI makes a pie chart based on the space each namespace is taking.

psql -U myuser mydb --csv  -c '
    SELECT
        N.nspname,
        sum(pg_relation_size(C.oid))*1e-6 AS size_mb
    FROM pg_class C
    LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace)
    GROUP BY 1
    ORDER BY 2 DESC' |
spyql "
    SELECT
        nspname if row_number < 10 else 'All others' as name,
        sum_agg(size_mb) AS size_mb
    FROM csv
    GROUP BY 1
    TO json" |
plt "
nice_labels = ['{0}\n{1:,.0f} MB'.format(n,s) for n,s in zip(name,size_mb)];
pie(size_mb, labels=nice_labels, autopct='%1.f%%', pctdistance=0.8, rotatelabels=True)"

Plotting a function

Disabling reading from stdin and generating the output using numpy.

plt --no-input "
x = np.linspace(-1,1,2000);
y = x*np.sin(1/x);
plot(x,y);
axis('scaled');
grid(True)"

Saving the plot to an image

Saving the output without showing the interactive window.

cat sample.json |
plt --no-show "
hist(x,30);
savefig('myimage.png', bbox_inches='tight')"

Plot of the global temperature

Here's a complete pipeline from getting the data to transforming and plotting it:

  1. Downloading a CSV file with curl;
  2. Skipping the first row with sed;
  3. Grabbing the year column and 12 columns with monthly temperatures to an array and converting to JSON lines format using SPyQL;
  4. Exploding the monthly array with SPyQL (resulting in 12 rows per year) while removing invalid monthly measurements;
  5. Plotting with MatplotCLI .
curl https://data.giss.nasa.gov/gistemp/tabledata_v4/GLB.Ts+dSST.csv |
sed 1d |
spyql "
  SELECT Year, cols[1:13] AS temps
  FROM csv
  TO json" |
spyql "
  SELECT
    json->Year + ((row_number-1)%12)/12 AS year,
    json->temps AS temp
  FROM json
  EXPLODE json->temps
  WHERE json->temps is not Null
  TO json" |
plt "
scatter(year, temp, 2, temp);
xlabel('Year');
ylabel('Temperature anomaly w.r.t. 1951-80 (ΒΊC)');
title('Global surface temperature (land and ocean)')"

You might also like...
These data visualizations were created for my introductory computer science course using Python
These data visualizations were created for my introductory computer science course using Python

Homework 2: Matplotlib and Data Visualization Overview These data visualizations were created for my introductory computer science course using Python

These data visualizations were created as homework for my CS40 class. I hope you enjoy!
These data visualizations were created as homework for my CS40 class. I hope you enjoy!

Data Visualizations These data visualizations were created as homework for my CS40 class. I hope you enjoy! Nobel Laureates by their Country of Birth

Generate visualizations of GitHub user and repository statistics using GitHub Actions.

GitHub Stats Visualization Generate visualizations of GitHub user and repository statistics using GitHub Actions. This project is currently a work-in-

A Python package for caclulations and visualizations in geological sciences.

geo_calcs A Python package for caclulations and visualizations in geological sciences. Free software: MIT license Documentation: https://geo-calcs.rea

Make scripted visualizations in blender
Make scripted visualizations in blender

Scripted visualizations in blender The goal of this project is to script 3D scientific visualizations using blender. To achieve this, we aim to bring

Standardized plots and visualizations in Python
Standardized plots and visualizations in Python

Standardized plots and visualizations in Python pltviz is a Python package for standardized visualization. Routine and novel plotting approaches are f

Generate visualizations of GitHub user and repository statistics using GitHub Actions.

GitHub Stats Visualization Generate visualizations of GitHub user and repository statistics using GitHub Actions. This project is currently a work-in-

Visualizations of some specific solutions of different differential equations.
Visualizations of some specific solutions of different differential equations.

Diff_sims Visualizations of some specific solutions of different differential equations. Heat Equation in 1 Dimension (A very beautiful and elegant ex

Data aggregated from the reports found at the MCPS COVID Dashboard into a set of visualizations.

Montgomery County Public Schools COVID-19 Visualizer Contents About this project Data Support this project About this project Data All data we use can

Comments
  • stats about input data

    stats about input data

    option to print simple statistics about the input data. e.g. for each field

    • number of missing values
    • number of distinct values
    • avg, min, max (if numeric)
    • number of nan, inf (if float)
    • ...
    enhancement good first issue 
    opened by dcmoura 0
Releases(v0.2.0)
Owner
Daniel Moura
Daniel Moura
This is my favourite function - the Rastrigin function.

This is my favourite function - the Rastrigin function. What sparked my curiosity and interest in the function was its complexity in terms of many local optimum points, which makes it particularly in

1 Dec 27, 2021
a simple REPL display lib for circuitpython

Circuitpython-termio-lib a simple REPL display lib for circuitpython Fonctions cls clear terminal screen and set cursor on top left : coords 0,0 usage

BeBoXoS 1 Nov 17, 2021
Piglet-shaders - PoC of custom shaders for Piglet

Piglet custom shader PoC This is a PoC for compiling Piglet fragment shaders usi

6 Mar 10, 2022
A program that analyzes data from inertia measurement units installed in aircraft and generates g-exceedance curves.

A program that analyzes data from inertia measurement units installed in aircraft and generates g-exceedance curves.

Pooya 1 Dec 02, 2021
LinkedIn connections analyzer

LinkedIn Connections Analyzer πŸ”— https://linkedin-analzyer.herokuapp.com Hey hey πŸ‘‹ , welcome to my LinkedIn connections analyzer. I recently found ou

Okkar Min 5 Sep 13, 2022
3D Vision functions with end-to-end support for deep learning developers, written in Ivy.

Ivy vision focuses predominantly on 3D vision, with functions for camera geometry, image projections, co-ordinate frame transformations, forward warping, inverse warping, optical flow, depth triangul

Ivy 61 Dec 29, 2022
Using SQLite within Python to create database and analyze Starcraft 2 units data (Pandas also used)

SQLite python Starcraft 2 English This project shows the usage of SQLite with python. To create, modify and communicate with the SQLite database from

1 Dec 30, 2021
2021 grafana arbitrary file read

2021_grafana_arbitrary_file_read base on pocsuite3 try 40 default plugins of grafana alertlist annolist barchart cloudwatch dashlist elasticsearch gra

ATpiu 5 Nov 09, 2022
Data Visualizer for Super Mario Kart (SNES)

Data Visualizer for Super Mario Kart (SNES)

MrL314 21 Nov 20, 2022
Colormaps for astronomers

cmastro: colormaps for astronomers πŸ”­ This package contains custom colormaps that have been used in various astronomical applications, similar to cmoc

Adrian Price-Whelan 12 Oct 11, 2022
A Jupyter - Leaflet.js bridge

ipyleaflet A Jupyter / Leaflet bridge enabling interactive maps in the Jupyter notebook. Usage Selecting a basemap for a leaflet map: Loading a geojso

Jupyter Widgets 1.3k Dec 27, 2022
NorthPitch is a python soccer plotting library that sits on top of Matplotlib

NorthPitch is a python soccer plotting library that sits on top of Matplotlib.

Devin Pleuler 30 Feb 22, 2022
A simple Monte Carlo simulation using Python and matplotlib library

Monte Carlo python simulation Install linux dependencies sudo apt update sudo apt install build-essential \ software-properties-commo

Samuel Terra 2 Dec 13, 2021
Render Jupyter notebook in the terminal

jut - JUpyter notebook Terminal viewer. The command line tool view the IPython/Jupyter notebook in the terminal. Install pip install jut Usage $jut --

Kracekumar 169 Dec 27, 2022
A toolkit to generate MR sequence diagrams

mrsd: a toolkit to generate MR sequence diagrams mrsd is a Python toolkit to generate MR sequence diagrams, as shown below for the basic FLASH sequenc

Julien Lamy 3 Dec 25, 2021
A guide for using Bootstrap 5 classes in Dash Bootstrap Components V1

dash-bootstrap-cheatsheet This handy interactive cheatsheet makes it easy to use the Bootstrap 5 classes with your Dash app made with the latest versi

10 Dec 22, 2022
A custom qq-plot for two sample data comparision

QQ-Plot 2 Sample Just a gist to include the custom code to draw a qq-plot in python when dealing with a "two sample problem". This means when u try to

1 Dec 20, 2021
Sparkling Pandas

SparklingPandas SparklingPandas aims to make it easy to use the distributed computing power of PySpark to scale your data analysis with Pandas. Sparkl

366 Oct 27, 2022
A script written in Python that generate output custom color (HEX or RGB input to x1b hexadecimal)

ColorShell ─ 1.5 Planned for v2: setup.sh for setup alias This script converts HEX and RGB code to x1b x1b is code for colorize outputs, works on ou

Riley 4 Oct 31, 2021
Ana's Portfolio

Ana's Portfolio ✌️ Welcome to my Portfolio! You will find here different Projects I have worked on (from scratch) πŸ’ͺ Projects πŸ’» 1️⃣ Hangman game (Mad

Ana Katherine Cortes Sobrino 9 Mar 15, 2022