Simple but maybe too simple config management through python data classes. We use it for machine learning.

Overview

๐Ÿ‘ฉโ€โœˆ๏ธ Coqpit

CI

Simple, light-weight and no dependency config handling through python data classes with to/from JSON serialization/deserialization.

Currently it is being used by ๐Ÿธ TTS.

โ” Why I need this

What I need from a ML configuration library...

  1. Fixing a general config schema in Python to guide users about expected values.

    Python is good but not universal. Sometimes you train a ML model and use it on a different platform. So, you need your model configuration file importable by other programming languages.

  2. Simple dynamic value and type checking with default values.

    If you are a beginner in a ML project, it is hard to guess the right values for your ML experiment. Therefore it is important to have some default values and know what range and type of input are expected for each field.

  3. Ability to decompose large configs.

    As you define more fields for the training dataset, data preprocessing, model parameters, etc., your config file tends to get quite large but in most cases, they can be decomposed, enabling flexibility and readability.

  4. Inheritance and nested configurations.

    Simply helps to keep configurations consistent and easier to maintain.

  5. Ability to override values from the command line when necessary.

    For instance, you might need to define a path for your dataset, and this changes for almost every run. Then the user should be able to override this value easily over the command line.

    It also allows easy hyper-parameter search without changing your original code. Basically, you can run different models with different parameters just using command line arguments.

  6. Defining dynamic or conditional config values.

    Sometimes you need to define certain values depending on the other values. Using python helps to define the underlying logic for such config values.

  7. No dependencies

    You don't want to install a ton of libraries for just configuration management. If you install one, then it is better to be just native python.

๐Ÿ” Examples

๐Ÿ‘‰ Simple Coqpit

import os
from dataclasses import asdict, dataclass, field

from coqpit.coqpit import MISSING, Coqpit, check_argument


@dataclass
class SimpleConfig(Coqpit):
    val_a: int = 10
    val_b: int = None
    val_d: float = 10.21
    val_c: str = "Coqpit is great!"
    # mandatory field
    # raise an error when accessing the value if it is not changed. It is a way to define
    val_k: int = MISSING
    # optional field
    val_dict: dict = field(default_factory=lambda: {"val_aa": 10, "val_ss": "This is in a dict."})
    # list of list
    val_listoflist: List[List] = field(default_factory=lambda: [[1, 2], [3, 4]])
    val_listofunion: List[List[Union[str]]] = field(default_factory=lambda: [[1, 3], [1, "Hi!"]])

    def check_values(
        self,
    ):  # you can define explicit constraints on the fields using `check_argument()`
        """Check config fields"""
        c = asdict(self)
        check_argument("val_a", c, restricted=True, min_val=10, max_val=2056)
        check_argument("val_b", c, restricted=True, min_val=128, max_val=4058, allow_none=True)
        check_argument("val_c", c, restricted=True)


if __name__ == "__main__":
    file_path = os.path.dirname(os.path.abspath(__file__))
    config = SimpleConfig()

    # try MISSING class argument
    try:
        k = config.val_k
    except AttributeError:
        print(" val_k needs a different value before accessing it.")
    config.val_k = 1000

    # try serialization and deserialization
    print(config.serialize())
    print(config.to_json())
    config.save_json(os.path.join(file_path, "example_config.json"))
    config.load_json(os.path.join(file_path, "example_config.json"))
    print(config.pprint())

    # try `dict` interface
    print(*config)
    print(dict(**config))

    # value assignment by mapping
    config["val_a"] = -999
    print(config["val_a"])
    assert config.val_a == -999

๐Ÿ‘‰ Serialization

import os
from dataclasses import asdict, dataclass, field
from coqpit import Coqpit, check_argument
from typing import List, Union


@dataclass
class SimpleConfig(Coqpit):
    val_a: int = 10
    val_b: int = None
    val_c: str = "Coqpit is great!"

    def check_values(self,):
        '''Check config fields'''
        c = asdict(self)
        check_argument('val_a', c, restricted=True, min_val=10, max_val=2056)
        check_argument('val_b', c, restricted=True, min_val=128, max_val=4058, allow_none=True)
        check_argument('val_c', c, restricted=True)


@dataclass
class NestedConfig(Coqpit):
    val_d: int = 10
    val_e: int = None
    val_f: str = "Coqpit is great!"
    sc_list: List[SimpleConfig] = None
    sc: SimpleConfig = SimpleConfig()
    union_var: Union[List[SimpleConfig], SimpleConfig] = field(default_factory=lambda: [SimpleConfig(),SimpleConfig()])

    def check_values(self,):
        '''Check config fields'''
        c = asdict(self)
        check_argument('val_d', c, restricted=True, min_val=10, max_val=2056)
        check_argument('val_e', c, restricted=True, min_val=128, max_val=4058, allow_none=True)
        check_argument('val_f', c, restricted=True)
        check_argument('sc_list', c, restricted=True, allow_none=True)
        check_argument('sc', c, restricted=True, allow_none=True)


if __name__ == '__main__':
    file_path = os.path.dirname(os.path.abspath(__file__))
    # init ๐Ÿธ dataclass
    config = NestedConfig()

    # save to a json file
    config.save_json(os.path.join(file_path, 'example_config.json'))
    # load a json file
    config2 = NestedConfig(val_d=None, val_e=500, val_f=None, sc_list=None, sc=None, union_var=None)
    # update the config with the json file.
    config2.load_json(os.path.join(file_path, 'example_config.json'))
    # now they should be having the same values.
    assert config == config2

    # pretty print the dataclass
    print(config.pprint())

    # export values to a dict
    config_dict = config.to_dict()
    # crate a new config with different values than the defaults
    config2 = NestedConfig(val_d=None, val_e=500, val_f=None, sc_list=None, sc=None, union_var=None)
    # update the config with the exported valuess from the previous config.
    config2.from_dict(config_dict)
    # now they should be having the same values.
    assert config == config2

๐Ÿ‘‰ argparse handling and parsing.

import argparse
import os
from dataclasses import asdict, dataclass, field
from typing import List

from coqpit.coqpit import Coqpit, check_argument
import sys


@dataclass
class SimplerConfig(Coqpit):
    val_a: int = field(default=None, metadata={'help': 'this is val_a'})


@dataclass
class SimpleConfig(Coqpit):
    val_a: int = field(default=10,
                       metadata={'help': 'this is val_a of SimpleConfig'})
    val_b: int = field(default=None, metadata={'help': 'this is val_b'})
    val_c: str = "Coqpit is great!"
    mylist_with_default: List[SimplerConfig] = field(
        default_factory=lambda:
        [SimplerConfig(val_a=100),
         SimplerConfig(val_a=999)],
        metadata={'help': 'list of SimplerConfig'})

    # mylist_without_default: List[SimplerConfig] = field(default=None, metadata={'help': 'list of SimplerConfig'})  # NOT SUPPORTED YET!

    def check_values(self, ):
        '''Check config fields'''
        c = asdict(self)
        check_argument('val_a', c, restricted=True, min_val=10, max_val=2056)
        check_argument('val_b',
                       c,
                       restricted=True,
                       min_val=128,
                       max_val=4058,
                       allow_none=True)
        check_argument('val_c', c, restricted=True)


def main():
    # initial config
    config = SimpleConfig()
    print(config.pprint())

    # reference config that we like to match with the config above
    config_ref = SimpleConfig(val_a=222,
                              val_b=999,
                              val_c='this is different',
                              mylist_with_default=[
                                  SimplerConfig(val_a=222),
                                  SimplerConfig(val_a=111)
                              ])

    # create and init argparser with Coqpit
    parser = argparse.ArgumentParser()
    parser = config.init_argparse(parser)
    parser.print_help()
    args = parser.parse_args()

    # parse the argsparser
    config.parse_args(args)
    config.pprint()
    # check the current config with the reference config
    assert config == config_ref


if __name__ == '__main__':
    sys.argv.extend(['--coqpit.val_a', '222'])
    sys.argv.extend(['--coqpit.val_b', '999'])
    sys.argv.extend(['--coqpit.val_c', 'this is different'])
    sys.argv.extend(['--coqpit.mylist_with_default.0.val_a', '222'])
    sys.argv.extend(['--coqpit.mylist_with_default.1.val_a', '111'])
    main()

๐Ÿคธโ€โ™€๏ธ Merging coqpits

import os
from dataclasses import dataclass
from coqpit.coqpit import Coqpit, check_argument


@dataclass
class CoqpitA(Coqpit):
    val_a: int = 10
    val_b: int = None
    val_d: float = 10.21
    val_c: str = "Coqpit is great!"


@dataclass
class CoqpitB(Coqpit):
    val_d: int = 25
    val_e: int = 257
    val_f: float = -10.21
    val_g: str = "Coqpit is really great!"


if __name__ == '__main__':
    file_path = os.path.dirname(os.path.abspath(__file__))
    coqpita = CoqpitA()
    coqpitb = CoqpitB()
    coqpitb.merge(coqpita)
    print(coqpitb.val_a)
    print(coqpitb.pprint())
Comments
  • Allow file-like objects when saving and loading

    Allow file-like objects when saving and loading

    Allow users to save the configs to arbitrary locations through file-like objects. Would e.g. simplify coqui-ai/TTS#683 without adding an fsspec dependency to this library.

    opened by agrinh 6
  • Latest PR causes an issue when a `Serializable` has default None

    Latest PR causes an issue when a `Serializable` has default None

    https://github.com/coqui-ai/coqpit/blob/5379c810900d61ae19d79b73b03890fa103487dd/coqpit/coqpit.py#L539

    @reuben I am on it but if you have an easy fix go for it. Right now it breaks all the TTS trainings.

    opened by erogol 2
  • [feature request] change the `arg_perfix` of coqpit

    [feature request] change the `arg_perfix` of coqpit

    Is it possible to change the arg_perfix when using Coqpit object to another value / empty string? I see the option is supported in the code by changing arg_perfix, but not sure how to access it using the proposed API.

    Thanks for the package, looks very useful!

    opened by mosheman5 1
  • Setup CI to push new tags to PyPI automatically

    Setup CI to push new tags to PyPI automatically

    I'm gonna add a workflow to automatically upload new tags to PyPI. @erogol when you have a chance could you transfer the coqpit project on PyPI to the coqui user?[0] Then you can add your personal account as a maintainer also, so you don't have to change your local setup.

    In the mean time I'll iterate on testpypi.

    [0] https://pypi.org/user/coqui/

    opened by reuben 1
  • Fix rsetattr

    Fix rsetattr

    rsetattr() is updated to pass the new test cases below.

    I don't know if it is the right solution. It might be that rsetattr confuses when coqpit is used as a prefix.

    opened by erogol 0
  • [feature request] Warning when unexpected key is loaded but not present in class

    [feature request] Warning when unexpected key is loaded but not present in class

    Here is an toy scenario where it would be nice to have a warning

    from dataclasses import dataclass
    from coqpit import Coqpit
    
    @dataclass
    class SimpleConfig(Coqpit):
        val_a: int = 10
        val_b: int = None
    
    if __name__ == "__main__":
        config = SimpleConfig()
    
        tmp_config = config.to_dict()
        tmp_config["unknown_key"] = "Ignored value"
        config.from_dict(tmp_config)
        print(config.to_json())
    

    There the value of config.to_json() is

    {
        "val_a": 10,
        "val_b": null
    }
    

    Which is expected behaviour, but we should get a warning that some keys were ignored (IMO)

    feature request 
    opened by WeberJulian 6
  • [feature request] Add `is_defined`

    [feature request] Add `is_defined`

    Use coqpit.is_defined('field') to check if "field" in coqpit and coqpit.field is not None:

    It is a common condition when you parse out a coqpit object.

    feature request 
    opened by erogol 0
  • Allow grouping of argparse fields according to subclassing

    Allow grouping of argparse fields according to subclassing

    When using inheritance to extend config definitions the resulting ArgumentParser has all fields flattened out. It would be nice to group fields by class and allow some control over ordering.

    opened by reuben 2
Releases(v0.0.17)
Owner
coqui
Coqui, a startup providing open speech tech for everyone ๐Ÿธ
coqui
A TODO-list tool written in Python

PyTD A TODO-list tool written in Python. Its goal is to provide a stable posibility to get a good view over all your TODOs motivate you to actually fi

1 Feb 12, 2022
All kinds of programs are accepted here, raise a genuine PR, and claim a PR, Make 4 successful PR's and get the Stickers and T-Shirt from hacktoberfest 2021

this repository is excluded from hacktoberfest Hacktoberfest-2021 This repository aims to help code beginners with their first successful pull request

34 Sep 11, 2022
A simple but flexible plugin system for Python.

PluginBase PluginBase is a module for Python that enables the development of flexible plugin systems in Python. Step 1: from pluginbase import PluginB

Armin Ronacher 1k Dec 16, 2022
Konomi: Kind and Optimized Next brOadcast watching systeM Infrastructure

Konomi ๅ‚™่€ƒใƒปๆณจๆ„ไบ‹้ … ็พๅœจ ฮฑ ็‰ˆใงใ€ใพใ ๅฎŸ้จ“็š„ใชใƒ—ใƒญใƒ€ใ‚ฏใƒˆใงใ™ใ€‚้€šๅธธๅˆฉ็”จใซใฏ่€ใˆใชใ„ใงใ—ใ‚‡ใ†ใ—ใ€ใ‚ตใƒใƒผใƒˆใ‚‚ใงใใพใ›ใ‚“ใ€‚ ๅฎ‰ๅฎšใ—ใฆใ„ใ‚‹ใจใฏๅˆฐๅบ•่จ€ใ„ใŒใŸใ„ๅ“่ณชใงใ™ใŒใ€ใใ‚Œใงใ‚‚ๆง‹ใ‚ใชใ„ๆ–นใฎใฟๅฐŽๅ…ฅใ—ใฆใใ ใ•ใ„ใ€‚ ไฝฟใ„ๆ–นใชใฉใฎ่ชฌๆ˜Žใ‚‚็”จๆ„ใงใใฆใ„ใชใ„ใŸใ‚ใ€่‡ชๅŠ›ใงใƒˆใƒฉใƒ–ใƒซใซๅฏพๅ‡ฆใงใใ‚‹ใ‚จใƒณใ‚ธใƒ‹ใ‚ขใฎๆ–นไปฅๅค–ใซ

tsukumi 243 Dec 30, 2022
A basic layout of atm working of my local database

Software for working Banking service ๐Ÿ˜„ This project was developed for Banking service. mysql server is required To have mysql server on your system u

satya 1 Oct 21, 2021
Get information about what a Python frame is currently doing, particularly the AST node being executed

executing This mini-package lets you get information about what a frame is currently doing, particularly the AST node being executed. Usage Getting th

Alex Hall 211 Jan 01, 2023
A Bot that adds YouTube views to your video of choice

YoutubeViews Free Youtube viewer bot A Bot that adds YouTube views to your video of choice Installation git clone https://github.com/davdtheemonk/Yout

ProbablyX 5 Dec 06, 2022
a url shortener with fastapi and tortoise-orm

fastapi-tortoise-orm-url-shortener a url shortener with fastapi and tortoise-orm

19 Aug 12, 2022
Superset custom path for python

It is a common requirement to have superset running under a base url, (https://mydomain.at/analytics/ instead of https://mydomain.at/). I created the

9 Dec 14, 2022
Make after-work Mending More flexible In Python

Mending Make after-work Mending More flexible In Python A Lite Package focuses on making project's after-post mending pythonic and flexible. Certainly

2 Jun 15, 2022
Datargsing is a data management and manipulation Python library

Datargsing What is It? Datargsing is a data management and manipulation Python library which is currently in deving Why this library is good? This Pyt

CHOSSY Lucas 10 Oct 24, 2022
A competition for forecasting electricity demand at the country-level using a standard backtesting framework

A competition for forecasting electricity demand at the country-level using a standard backtesting framework

5 Jul 12, 2022
Library for mocking AsyncIOMotorClient built on top of mongomock.

mongomock-motor Best effort mock for AsyncIOMotorClient (Database, Collection, e.t.c) built on top of mongomock library. Example / Showcase from mongo

Michael Kryukov 43 Jan 04, 2023
Code for the manim-generated scenes used in 3blue1brown videos

This project contains the code used to generate the explanatory math videos found on 3Blue1Brown. This almost entirely consists of scenes generated us

Grant Sanderson 4.1k Jan 02, 2023
PBN Obfuscator: A overpowered obfuscator for python, which will help you protect your source code

PBN Obfuscator PBN Obfuscator is a overpowered obfuscator for python, which will

Karim 6 Dec 22, 2022
NewsBlur is a personal news reader bringing people together to talk about the world.

NewsBlur NewsBlur is a personal news reader bringing people together to talk about the world.

Samuel Clay 6.2k Dec 29, 2022
Fully coded Apps by Codex.

OpenAI-Codex-Code-Generation Fully coded Apps by Codex. How I use Codex in VSCode to generate multiple completions with autosorting by highest "mean p

nanowell 47 Jan 01, 2023
Urban Big Data Centre Housing Sensor Project

Housing Sensor Project The Urban Big Data Centre is conducting a study of indoor environmental data in Scottish houses. We are using Raspberry Pi devi

Jeremy Singer 2 Dec 13, 2021
A program that takes Python classes and turns them into CSS classes.

PyCSS What is it? PyCSS is a micro-framework to speed up the process of writing bulk CSS classes. How does it do it? With Python!!! First download the

T.R Batt 0 Aug 03, 2021
Simple and easy to use python API for the COVID registration booking system of the math department @ unipd (torre archimede)

Simple and easy to use python API for the COVID registration booking system of the math department @ unipd (torre archimede). This API creates an interface with the official browser, with more useful

Guglielmo Camporese 4 Dec 24, 2021