Convert scikit-learn models to PyTorch modules

Related tags

Deep Learningsk2torch
Overview

sk2torch

sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript.

Problems solved by this project:

  1. scikit-learn cannot perform inference on a GPU. Models like SVMs have a lot to gain from fast GPU primitives, and converting the models to PyTorch gives immediate access to these primitives.
  2. While scikit-learn supports serialization through pickle, saved models are not reproducible across versions of the library. On the other hand, TorchScript provides a convenient, safe way to save a model with its corresponding implementation. The resulting models can be loaded anywhere that PyTorch is installed, even without importing sk2torch.
  3. While certain models like SVMs and linear classifiers are theoretically end-to-end differentiable, scikit-learn provides no mechanism to compute gradients through trained models. PyTorch provides this functionality mostly for free.

See Usage for a high-level example of using the library. See How it works to see which modules are supported.

For fun, here's a vector field produced by differentiating the probability predictions of a two-class SVM (produced by this script):

A vector field quiver plot with two modes

Usage

First, train a model with scikit-learn as usual:

from sklearn.linear_model import SGDClassifier
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

x, y = create_some_dataset()
model = Pipeline([
    ("center", StandardScaler(with_std=False)),
    ("classify", SGDClassifier()),
])
model.fit(x, y)

Then call sk2torch.wrap on the model to create a PyTorch equivalent:

import sk2torch
import torch

torch_model = sk2torch.wrap(model)
print(torch_model.predict(torch.tensor([[1., 2., 3.]]).double()))

You can save a model with TorchScript:

import torch.jit

torch.jit.script(torch_model).save("path.pt")

# ... sk2torch need not be installed to load the model.
loaded_model = torch.jit.load("path.pt")

For a full example of training a model and using its PyTorch translation, see examples/svm_vector_field.py.

How it works

sk2torch contains PyTorch re-implementations of supported scikit-learn models. For a supported estimator X, a class TorchX in sk2torch will be able to read the attributes of X and convert them to torch.Tensor or simple Python types. TorchX subclasses torch.nn.Module and has a method for each inference API of X (e.g. predict, decision_function, etc.).

Which modules are supported? The easiest way to get an up-to-date list is via the supported_classes() function, which returns all wrap()able scikit-learn classes:

>>> import sk2torch
>>> sk2torch.supported_classes()
[<class 'sklearn.tree._classes.DecisionTreeClassifier'>, <class 'sklearn.tree._classes.DecisionTreeRegressor'>, <class 'sklearn.dummy.DummyClassifier'>, <class 'sklearn.ensemble._gb.GradientBoostingClassifier'>, <class 'sklearn.preprocessing._label.LabelBinarizer'>, <class 'sklearn.svm._classes.LinearSVC'>, <class 'sklearn.svm._classes.LinearSVR'>, <class 'sklearn.neural_network._multilayer_perceptron.MLPClassifier'>, <class 'sklearn.kernel_approximation.Nystroem'>, <class 'sklearn.pipeline.Pipeline'>, <class 'sklearn.linear_model._stochastic_gradient.SGDClassifier'>, <class 'sklearn.preprocessing._data.StandardScaler'>, <class 'sklearn.svm._classes.SVC'>, <class 'sklearn.svm._classes.NuSVC'>, <class 'sklearn.svm._classes.SVR'>, <class 'sklearn.svm._classes.NuSVR'>, <class 'sklearn.compose._target.TransformedTargetRegressor'>]

Comparison to sklearn-onnx

sklearn-onnx is an open source package for converting trained scikit-learn models into ONNX. Like sk2torch, sklearn-onnx re-implements inference functions for various models, meaning that it can also provide serialization and GPU acceleration for supported modules.

Naturally, neither library will support modules that aren't manually ported. As a result, the two libraries support different subsets of all available models/methods. For example, sk2torch supports the SVC probability prediction methods predict_proba and predict_log_prob, whereas sklearn-onnx does not.

While sklearn-onnx exports models to ONNX, sk2torch exports models to Python objects with familiar method names that can be fine-tuned, backpropagated through, and serialized in a user-friendly way. PyTorch is strictly more general than ONNX, since PyTorch models can be converted to ONNX if desired.

Owner
Alex Nichol
Web developer, math geek, and AI enthusiast.
Alex Nichol
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 06, 2023
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022
Simple SN-GAN to generate CryptoPunks

CryptoPunks GAN Simple SN-GAN to generate CryptoPunks. Neural network architecture and training code has been modified from the PyTorch DCGAN example.

Teddy Koker 66 Dec 15, 2022
Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL)

Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL) A preprint version of our paper: Link here This is a samp

Di Zhuang 3 Jan 08, 2023
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
Streamlit component for TensorBoard, TensorFlow's visualization toolkit

streamlit-tensorboard This is a work-in-progress, providing a function to embed TensorBoard, TensorFlow's visualization toolkit, in Streamlit apps. In

Snehan Kekre 27 Nov 13, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more

PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe

Ross Wightman 22.9k Jan 09, 2023
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022