Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

Overview

BoxeR

By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek.

This repository is an official implementation of the paper BoxeR: Box-Attention for 2D and 3D Transformers.

Introduction

TL; DR. BoxeR is a Transformer-based network for end-to-end 2D object detection and instance segmentation, along with 3D object detection. The core of the network is Box-Attention which predicts regions of interest to attend by learning the transformation (translation, scaling, and rotation) from reference windows, yielding competitive performance on several vision tasks.

BoxeR

BoxeR

Abstract. In this paper, we propose a simple attention mechanism, we call box-attention. It enables spatial interaction between grid features, as sampled from boxes of interest, and improves the learning capability of transformers for several vision tasks. Specifically, we present BoxeR, short for Box Transformer, which attends to a set of boxes by predicting their transformation from a reference window on an input feature map. The BoxeR computes attention weights on these boxes by considering its grid structure. Notably, BoxeR-2D naturally reasons about box information within its attention module, making it suitable for end-to-end instance detection and segmentation tasks. By learning invariance to rotation in the box-attention module, BoxeR-3D is capable of generating discriminative information from a bird's-eye view plane for 3D end-to-end object detection. Our experiments demonstrate that the proposed BoxeR-2D achieves state-of-the-art results on COCO detection and instance segmentation. Besides, BoxeR-3D improves over the end-to-end 3D object detection baseline and already obtains a compelling performance for the vehicle category of Waymo Open, without any class-specific optimization.

License

This project is released under the MIT License.

Citing BoxeR

If you find BoxeR useful in your research, please consider citing:

@article{nguyen2021boxer,
  title={BoxeR: Box-Attention for 2D and 3D Transformers},
  author={Duy{-}Kien Nguyen and Jihong Ju and Olaf Booij and Martin R. Oswald and Cees G. M. Snoek},
  journal={arXiv preprint arXiv:2111.13087},
  year={2021}
}

Main Results

COCO Instance Segmentation Baselines with BoxeR-2D

Name param
(M)
infer
time
(fps)
box
AP
box
AP-S
box
AP-M
box
AP-L
segm
AP
segm
AP-S
segm
AP-M
segm
AP-L
BoxeR-R50-3x 40.1 12.5 50.3 33.4 53.3 64.4 42.9 22.8 46.1 61.7
BoxeR-R101-3x 59.0 10.0 50.7 33.4 53.8 65.7 43.3 23.5 46.4 62.5
BoxeR-R101-5x 59.0 10.0 51.9 34.2 55.8 67.1 44.3 24.7 48.0 63.8

Installation

Requirements

  • Linux, CUDA>=11, GCC>=5.4

  • Python>=3.8

    We recommend you to use Anaconda to create a conda environment:

    conda create -n boxer python=3.8

    Then, activate the environment:

    conda activate boxer
  • PyTorch>=1.10.1, torchvision>=0.11.2 (following instructions here)

    For example, you could install pytorch and torchvision as following:

    conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
  • Other requirements & Compilation

    python -m pip install -e BoxeR

    You can test the CUDA operators (box and instance attention) by running

    python tests/box_attn_test.py
    python tests/instance_attn_test.py

Usage

Dataset preparation

The datasets are assumed to exist in a directory specified by the environment variable $E2E_DATASETS. If the environment variable is not specified, it will be set to be .data. Under this directory, detectron2 will look for datasets in the structure described below.

$E2E_DATASETS/
├── coco/
└── waymo/

For COCO Detection and Instance Segmentation, please download COCO 2017 dataset and organize them as following:

$E2E_DATASETS/
└── coco/
	├── annotation/
		├── instances_train2017.json
		├── instances_val2017.json
		└── image_info_test-dev2017.json
	├── image/
		├── train2017/
		├── val2017/
		└── test2017/
	└── vocabs/
		└── coco_categories.txt - the mapping from coco categories to indices.

The coco_categories.txt can be downloaded here.

For Waymo Detection, please download Waymo Open dataset and organize them as following:

$E2E_DATASETS/
└── waymo/
	├── infos/
		├── dbinfos_train_1sweeps_withvelo.pkl
		├── infos_train_01sweeps_filter_zero_gt.pkl
		└── infos_val_01sweeps_filter_zero_gt.pkl
	└── lidars/
		├── gt_database_1sweeps_withvelo/
			├── CYCLIST/
			├── VEHICLE/
			└── PEDESTRIAN/
		├── train/
			├── annos/
			└── lidars/
		└── val/
			├── annos/
			└── lidars/

You can generate data files for our training and evaluation from raw data by running create_gt_database.py and create_imdb in tools/preprocess.

Training

Our script is able to automatically detect the number of available gpus on a single node. It works best with Slurm system when it can auto-detect the number of available gpus along with nodes. The command for training BoxeR is simple as following:

python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE}

For example,

  • COCO Detection
python tools/run.py --config e2edet/config/COCO-Detection/boxer2d_R_50_3x.yaml --model boxer2d --task detection
  • COCO Instance Segmentation
python tools/run.py --config e2edet/config/COCO-InstanceSegmentation/boxer2d_R_50_3x.yaml --model boxer2d --task detection
  • Waymo Detection,
python tools/run.py --config e2edet/config/Waymo-Detection/boxer3d_pointpillar.yaml --model boxer3d --task detection3d

Some tips to speed-up training

  • If your file system is slow to read images but your memory is huge, you may consider enabling 'cache_mode' option to load whole dataset into memory at the beginning of training:
python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE} dataset_config.${TASK_TYPE}.cache_mode=True
  • If your GPU memory does not fit the batch size, you may consider to use 'iter_per_update' to perform gradient accumulation:
python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE} training.iter_per_update=2
  • Our code also supports mixed precision training. It is recommended to use when you GPUs architecture can perform fast FP16 operations:
python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE} training.use_fp16=(float16 or bfloat16)

Evaluation

You can get the config file and pretrained model of BoxeR, then run following command to evaluate it on COCO 2017 validation/test set:

python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE} training.run_type=(val or test or val_test)

For Waymo evaluation, you need to additionally run the script e2edet/evaluate/waymo_eval.py from the root folder to get the final result.

Analysis and Visualization

You can get the statistics of BoxeR (fps, flops, # parameters) by running tools/analyze.py from the root folder.

python tools/analyze.py --config-path save/COCO-InstanceSegmentation/boxer2d_R_101_3x.yaml --model-path save/COCO-InstanceSegmentation/boxer2d_final.pth --tasks speed flop parameter

The notebook for BoxeR-2D visualization is provided in tools/visualization/BoxeR_2d_segmentation.ipynb.

Owner
Nguyen Duy Kien
Learn things deeply
Nguyen Duy Kien
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
Official implementation of Long-Short Transformer in PyTorch.

Long-Short Transformer (Transformer-LS) This repository hosts the code and models for the paper: Long-Short Transformer: Efficient Transformers for La

NVIDIA Corporation 198 Dec 29, 2022
Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Shoaib ahmed 1 Dec 26, 2021
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
Pytorch implementation of DeePSiM

Pytorch implementation of DeePSiM

1 Nov 05, 2021
MPI-IS Mesh Processing Library

Perceiving Systems Mesh Package This package contains core functions for manipulating meshes and visualizing them. It requires Python 3.5+ and is supp

Max Planck Institute for Intelligent Systems 494 Jan 06, 2023
BlockUnexpectedPackets - Preventing BungeeCord CPU overload due to Layer 7 DDoS attacks by scanning BungeeCord's logs

BlockUnexpectedPackets This script automatically blocks DDoS attacks that are sp

SparklyPower 3 Mar 31, 2022
InterfaceGAN++: Exploring the limits of InterfaceGAN

InterfaceGAN++: Exploring the limits of InterfaceGAN Authors: Apavou Clément & Belkada Younes From left to right - Images generated using styleGAN and

Younes Belkada 42 Dec 23, 2022
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Hui-Po Wang 46 Sep 05, 2022
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Computational Photography Lab @ SFU 1.1k Jan 02, 2023
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023