Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Related tags

Deep LearningSIB-CL
Overview

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

This repository contains all source code used to generate the results in the article "Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science". (url: to-be-updated)

  • The folder generate_datasets contains all numerical programs used to generate the datasets, for both Photonic Crystals (PhC) and the Time-independent Schrodinger Equation (TISE)
  • main.py is the main code used to train the neural networks (explained in detail below)

Dependencies

Please install the required Python packages: pip install -r requirements.txt

A python3 environment can be created prior to this: conda create -n sibcl python=3.8; conda activate sibcl

Assess to MATLAB is required to calculate the density-of-states (DOS) of PhCs.

Dataset Generation

Photonic Crystals (PhCs)

Relevant code stored in generate_datasets/PhC/. Periodic unit cells are defined using a level set of a Fourier sum; different unit cells can be generated using the get_random() method of the FourierPhC class defined in fourier_phc.py.

To generate the labeled PhC datasets, we first compute their band structures using MPB. This can be executed via:

For the target dataset of random fourier unit cells, python phc_gendata.py --h5filename="mf1-s1" --pol="tm" --nsam=5000 --maxF=1 --seed=1;

and for the source dataset of simple cylinders, python phc_gencylin.py --h5filename="cylin" --pol="tm" --nsam=10000;

each program will create a dataset with the eigen-frequencies, group velocities, etc, stored in a .h5 file (which can be accessed using the h5py package). We then calculate the DOS using the GRR method provided by the MATLAB code https://github.com/boyuanliuoptics/DOS-calculation/blob/master/DOS_GGR.m. To do so, we first parse the data to create the .txt files required as inputs to the program, compute the DOS using MATLAB and then add the DOS labels back to the original .h5 files. These steps will be executed automatically by simply running the shell script get_DOS.sh after modifying the h5 filename identifier defined at the top. Note that for this to run smoothly, python and MATLAB will first need to be added to PATH.

Time-independent Schrodinger Equation (TISE)

Relevant code stored in generate_datasets/TISE/. Example usage:

To generate target dataset, e.g. in 3D, python tise_gendata.py --h5filename="tise3d" --ndim 3 --nsam 5000

To generate low resolution dataset, python tise_gendata.py --h5filename='tise3d_lr' --ndim 3 --nsam 10000 --lowres --orires=32 (--orires defines the resolution of the input to the neural network)

To generate qho dataset, python tise_genqho.py --h5filename='tise2d_qho' --ndim 2 --nsam 10000

SIB-CL and baselines training

Training of the neural networks for all problems introduced in the article (i.e. PhC DOS prediction, PhC Band structure prediction, TISE ground state energy prediction using both low resolution or QHO data as surrogate) can all be executed using main.py by indicating the appropriate flags (see below). This code also allows training via the SIB-CL framework or any of the baselines, again with the use of the appropriate flag. This code also contains other prediction problems not presented in the article, such as predicting higher energy states of TISE, TISE wavefunctions and single band structure.

Important flags:

--path_to_h5: indicate directory where h5 datasets are located. The h5 filenames defined in the dataset classes in datasets_PhC_SE.py should also be modified according to the names used during dataset generation.

--predict: defines prediction task. Options: 'DOS', 'bandstructures', 'eigval', 'oneband', 'eigvec'

--train: specify if training via SIB-CL or baselines. Options: 'sibcl', 'tl', 'sl', 'ssl' ('ssl' performs regular contrastive learning without surrogate dataset). For invariance-boosted baselines, e.g. TL-I or SL-I, specify 'tl' or 'sl' here and add the relevant invariances flags (see below).

--iden: required; specify identifier for saving of models, training logs and results

Invariances flags: --translate_pbc (set this flag to include rolling translations), --pg_uniform (set this flag to uniformly sample the point group symmetry transformations), --scale (set this flag to scale unit cell - used for PhC), --rotate (set this flag to do 4-fold rotations), --flip (set this flag to perform horizontal and vertical mirrors). If --pg_uniform is used, there is no need to include --rotate and --flip.

Other optional flags can be displayed via python main.py --help. Examples of shell scripts can be found in the sh_scripts folder.

Training outputs:

By default, running main.py will create 3 subdirectories:

  • ./pretrained_models/: state dictionaries of pretrained models at various epochs indicated in the eplist variable will be saved to this directory. These models are used for further fine-tuning.
  • ./dicts/: stores the evaluation losses on the test set as dictionaries saved as .json files. The results can then be plotted using plot_results.py.
  • ./tlogs/: training curves for pre-training and fine-tuning are stored in dictionaries saved as .json files. The training curves can be plotted using get_training_logs.py. Alternatively, the --log_to_tensorboard flag can be set and training curves can be viewed using tensorboard; in this case, the dictionaries will not be generated.
You might also like...
pytorch implementation of
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

PyTorch implementation of
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

Releases(v1.0)
Owner
Charlotte Loh
PhD candidate at MIT EECS
Charlotte Loh
GDSC-ML Team Interview Task

GDSC-ML-Team---Interview-Task Task 1 : Clean or Messy room In this task we have to classify the given test images as clean or messy. - Link for datase

Aayush. 1 Jan 19, 2022
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022
[IROS2021] NYU-VPR: Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences

NYU-VPR This repository provides the experiment code for the paper Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymiza

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 22 Sep 28, 2022
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022
Space Ship Simulator using python

FlyOver Basic space-ship simulator using python How to run? Just double click run.py What modules do i need? All modules that i currently using is bui

0 Oct 09, 2022
code for generating data set ES-ImageNet with corresponding training code

es-imagenet-master code for generating data set ES-ImageNet with corresponding training code dataset generator some codes of ODG algorithm The variabl

Ordinarabbit 18 Dec 25, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
Facebook Research 605 Jan 02, 2023
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Library to enable Bayesian active learning in your research or labeling work.

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022