Constructing Neural Network-Based Models for Simulating Dynamical Systems

Overview

Constructing Neural Network-Based Models for Simulating Dynamical Systems

Note this repo is work in progress prior to reviewing

This is a companion repo for the review paper Constructing Neural Network-Based Models for Simulating Dynamical Systems. The goal is to provide PyTorch implementations that can be used as a starting point for implementation for other applications.

If you use the work please cite it using:

{
    TODO add bibtex key
}

Installing dependencies

python3 -m pip install -r requirements.txt

Where are the models located?

The table below contains the commands necessary to train and evaluate the models described in the review paper. Each experiment can be run using default parameters by executing the script in the python interpreter as follows:

python3 experiments/
   
    .py ...

   
Name Section Command
Vanilla Direct-Solution 3.2 python3 experiments/direct_solution.py --model vanilla
Automatic Differentiation in Direct-Solution 3.3 python3 experiments/direct_solution.py --model autodiff
Physics Informed Neural Networks 3.4 python3 experiments/direct_solution.py --model pinn
Hidden Physics Networks 3.5 python3 experiments/direct_solution.py --model hnn
Direct Time-Stepper 4.2.1 python3 experiments/time_stepper.py --solver direct
Residual Time-Stepper 4.2.2 python3 experiments/time_stepper.py --solver resnet
Euler Time-Stepper 4.2.3 python3 experiments/time_stepper.py --solver euler
Neural ODEs Time-Stepper 4.2.4 python3 experiments/time_stepper.py --solver {rk4,dopri5,tsit5}
Neural State-Space Model 4.3.1 ...
Neural ODEs with input 4.3.2-3 ...
Lagrangian Time-Stepper 4.4.1 ...
Hamiltonian Time-Stepper 4.4.1 ...
Deep Potential Time-Stepper 4.4.2 ...
Deep Markov-Model 4.5.1 ...
Latent Neural ODEs 4.5.2 python3 experiments/latent_neural_odes.py
Bayesian Neural ODEs 4.5.3 ...
Neural SDEs 4.5.4 ...

Docker Image

In an effort to ensure that the code can be executed in the future, we provide a docker image. The Docker image allows the code to be run in a Linux based virtual machine on any platform supported by Docker.

To use the docker image, invoke the build command in the root of this repository:

docker build . -t python_dynamical_systems

Following this "containers" containing the code and all dependencies can be instantiated via the "run" command:

docker run -ti python_dynamical_systems bash

The command will establish an interactive connection to the container. Following this you can execute the code as if it was running on your host machine:

python3 experiments/time_stepper.py ...
Owner
Christian Møldrup Legaard
Christian Møldrup Legaard
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Vector AI 267 Dec 23, 2022
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Vehicle Indicator Toolset Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages. Tracking of vehi

Alex Xu 12 Dec 28, 2021
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
Python-kafka-reset-consumergroup-offset-example - Python Kafka reset consumergroup offset example

Python Kafka reset consumergroup offset example This is a simple example of how

Willi Carlsen 1 Feb 16, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
Code for our paper "Interactive Analysis of CNN Robustness"

Perturber Code for our paper "Interactive Analysis of CNN Robustness" Datasets Feature visualizations: Google Drive Fine-tuning checkpoints as saved m

Stefan Sietzen 0 Aug 17, 2021
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

Zechen Bai 12 Jul 08, 2022
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
Manim is an engine for precise programmatic animations, designed for creating explanatory math videos

Manim is an engine for precise programmatic animations, designed for creating explanatory math videos. Note, there are two versions of manim. This rep

Grant Sanderson 49k Jan 09, 2023
Code for "R-GCN: The R Could Stand for Random"

RR-GCN: Random Relational Graph Convolutional Networks PyTorch Geometric code for the paper "R-GCN: The R Could Stand for Random" RR-GCN is an extensi

PreDiCT.IDLab 31 Sep 07, 2022
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang

Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C

Shen Lab at Texas A&M University 80 Nov 23, 2022
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022