Tensorflow implementation of DeepLabv2

Overview

TF-deeplab

This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1.

Currently it supports both training and testing the ResNet 101 version by converting the caffemodel provided by Jay.

Note that the current version is not multi-scale, i.e. only uses the original resolution branch and discarding all layers of 0.5 and 0.75 resolution.

The caffemodel2npy.py is modified from here, and the deeplab_model.py is modified from here.

Example Usage

  • Download the prototxt and caffemodel provided by Jay
  • Convert caffemodel to npy file
python caffemodel2npy.py deploy.prototxt ../deeplab/ResNet101/init.caffemodel ./model/ResNet101_init.npy
python caffemodel2npy.py deploy.prototxt ../deeplab/ResNet101/train_iter_20000.caffemodel ./model/ResNet101_train.npy
python caffemodel2npy.py deploy.prototxt ../deeplab/ResNet101/train2_iter_20000.caffemodel ./model/ResNet101_train2.npy
  • Convert npy file to tfmodel
python npy2tfmodel.py 0 ./model/ResNet101_init.npy ./model/ResNet101_init.tfmodel
python npy2tfmodel.py 0 ./model/ResNet101_train.npy ./model/ResNet101_train.tfmodel
python npy2tfmodel.py 0 ./model/ResNet101_train2.npy ./model/ResNet101_train2.tfmodel
  • Test on a single image
python deeplab_main.py 0 single
  • Test on the PASCAL VOC2012 validation set (you will also want to look at the matlab folder and run EvalSegResults.m after you run the following command)
python deeplab_main.py 0 test
  • To train on the PASCAL VOC2012 train_aug, run
python deeplab_main.py 0 train

Performance

The converted DeepLab ResNet 101 model achieves mean IOU of 73.296% on the validation set of PASCAL VOC2012. Again, this is only with the original resolution branch, which is likely to be the reason for the performance gap (according to the paper this number should be around 75%).

TODO

  • Incorporating 0.5 and 0.75 resolution
Owner
Chenxi Liu
Ph.D. Student in Computer Science
Chenxi Liu
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
Vikrant Deshpande 1 Nov 17, 2022
The codes reproduce the figures and statistics in the paper, "Controlling for multiple covariates," by Mark Tygert.

The accompanying codes reproduce all figures and statistics presented in "Controlling for multiple covariates" by Mark Tygert. This repository also pr

Meta Research 1 Dec 02, 2021
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing

Ning Wang 180 Dec 06, 2022
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
LBK 26 Dec 28, 2022
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022