PyTorch implementation of PNASNet-5 on ImageNet

Overview

PNASNet.pytorch

PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetation and the official implementation of PNASNet-5, both written in TensorFlow. This complete match allows the pretrained TF model to be exactly converted to PyTorch: see convert.py.

If you use the code, please cite:

@inproceedings{liu2018progressive,
  author    = {Chenxi Liu and
               Barret Zoph and
               Maxim Neumann and
               Jonathon Shlens and
               Wei Hua and
               Li{-}Jia Li and
               Li Fei{-}Fei and
               Alan L. Yuille and
               Jonathan Huang and
               Kevin Murphy},
  title     = {Progressive Neural Architecture Search},
  booktitle = {European Conference on Computer Vision},
  year      = {2018}
}

Requirements

  • TensorFlow 1.8.0 (for image preprocessing)
  • PyTorch 0.4.0
  • torchvision 0.2.1

Data and Model Preparation

  • Download the ImageNet validation set and move images to labeled subfolders. To do the latter, you can use this script. Make sure the folder val is under data/.
  • Download PNASNet.TF and follow its README to download the PNASNet-5_Large_331 pretrained model.
  • Convert TensorFlow model to PyTorch model:
python convert.py

Notes on Model Conversion

  • In both TensorFlow implementations, net[0] means prev and net[1] means prev_prev. However, in the PyTorch implementation, states[0] means prev_prev and states[1] means prev. I followed the PyTorch implemetation in this repository. This is why the 0 and 1 in PNASCell specification are reversed.
  • The default value of eps in BatchNorm layers is 1e-3 in TensorFlow and 1e-5 in PyTorch. I changed all BatchNorm eps values to 1e-3 (see operations.py) to exactly match the TensorFlow pretrained model.
  • The TensorFlow pretrained model uses tf.image.resize_bilinear to resize the image (see utils.py). I cannot find a python function that exactly matches this function's behavior (also see this thread and this post on this topic), so currently in main.py I call TensorFlow to do the image preprocessing, in order to guarantee both models have the identical input.
  • When converting the model from TensorFlow to PyTorch (i.e. convert.py), I use input image size of 323 instead of 331. This is because the 'SAME' padding in TensorFlow may differ from padding in PyTorch in some layers (see this link; basically TF may only pad 1 right and bottom, whereas PyTorch always pads 1 for all four margins). However, they behave exactly the same when image size is 323: conv0 does not have padding, so feature size becomes 161, then 81, 41, etc.
  • The exact conversion when image size is 323 is also corroborated by the following table:
Image Size Official TensorFlow Model Converted PyTorch Model
(331, 331) (0.829, 0.962) (0.828, 0.961)
(323, 323) (0.827, 0.961) (0.827, 0.961)

Usage

python main.py

The last printed line should read:

Test: [50000/50000]	[email protected] 0.828	[email protected] 0.961
Owner
Chenxi Liu
Ph.D. Student in Computer Science
Chenxi Liu
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
Council-GAN - Implementation for our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Council-GAN Implementation of our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020) Paper Ori Nizan , Ayellet Tal, Breaking the Cycle

ori nizan 260 Nov 16, 2022
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
Complete-IoU (CIoU) Loss and Cluster-NMS for Object Detection and Instance Segmentation (YOLACT)

Complete-IoU Loss and Cluster-NMS for Improving Object Detection and Instance Segmentation. Our paper is accepted by IEEE Transactions on Cybernetics

290 Dec 25, 2022
A Real-World Benchmark for Reinforcement Learning based Recommender System

RL4RS: A Real-World Benchmark for Reinforcement Learning based Recommender System RL4RS is a real-world deep reinforcement learning recommender system

121 Dec 01, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

11 Oct 08, 2022
DumpSMBShare - A script to dump files and folders remotely from a Windows SMB share

DumpSMBShare A script to dump files and folders remotely from a Windows SMB shar

Podalirius 178 Jan 06, 2023
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023