FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

Overview

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

声明:

本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关!

简介

本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现有网络结构实现一个完整的落地项目,仅供人工智能自动控制等方面的学习研究,不可用于非法用途!!!

环境配置

1.软件环境
使用conda导入yolo.yaml

name: yolo
channels:
- pytorch
- conda-forge
- https://mirrors.ustc.edu.cn/anaconda/pkgs/main
- https://mirrors.ustc.edu.cn/anaconda/pkgs/free
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/msys2
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/pro
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/r
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/free
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/main
- defaults
dependencies:
- absl-py=0.13.0=py38haa95532_0
- aiohttp=3.7.4=py38h2bbff1b_1
- async-timeout=3.0.1=py38haa95532_0
- attrs=21.2.0=pyhd3eb1b0_0
- blas=1.0=mkl
- blinker=1.4=py38haa95532_0
- bottleneck=1.3.2=py38h2a96729_1
- brotli=1.0.9=ha925a31_2
- brotlipy=0.7.0=py38h2bbff1b_1003
- ca-certificates=2021.5.30=h5b45459_0
- cachetools=4.2.2=pyhd3eb1b0_0
- certifi=2021.5.30=py38haa244fe_0
- cffi=1.14.6=py38h2bbff1b_0
- chardet=3.0.4=py38haa95532_1003
- click=8.0.1=pyhd3eb1b0_0
- cryptography=3.4.7=py38h71e12ea_0
- cudatoolkit=10.2.89=h74a9793_1
- cycler=0.10.0=py38_0
- fonttools=4.25.0=pyhd3eb1b0_0
- freetype=2.10.4=hd328e21_0
- google-auth=1.33.0=pyhd3eb1b0_0
- google-auth-oauthlib=0.4.1=py_2
- grpcio=1.35.0=py38hc60d5dd_0
- icc_rt=2019.0.0=h0cc432a_1
- icu=58.2=ha925a31_3
- idna=2.10=pyhd3eb1b0_0
- importlib-metadata=3.10.0=py38haa95532_0
- intel-openmp=2021.3.0=haa95532_3372
- jpeg=9b=hb83a4c4_2
- kiwisolver=1.3.1=py38hd77b12b_0
- libpng=1.6.37=h2a8f88b_0
- libprotobuf=3.17.2=h23ce68f_1
- libtiff=4.2.0=hd0e1b90_0
- libuv=1.40.0=he774522_0
- lz4-c=1.9.3=h2bbff1b_1
- markdown=3.3.4=py38haa95532_0
- matplotlib=3.4.2=py38haa95532_0
- matplotlib-base=3.4.2=py38h49ac443_0
- mkl=2021.3.0=haa95532_524
- mkl-service=2.4.0=py38h2bbff1b_0
- mkl_fft=1.3.0=py38h277e83a_2
- mkl_random=1.2.2=py38hf11a4ad_0
- msys2-conda-epoch=20160418=1
- multidict=5.1.0=py38h2bbff1b_2
- munkres=1.1.4=py_0
- ninja=1.7.2=0
- numexpr=2.7.3=py38hb80d3ca_1
- numpy=1.20.3=py38ha4e8547_0
- numpy-base=1.20.3=py38hc2deb75_0
- oauthlib=3.1.1=pyhd3eb1b0_0
- olefile=0.46=py_0
- openssl=1.1.1k=h8ffe710_1
- pandas=1.3.1=py38h6214cd6_0
- pillow=8.3.1=py38h4fa10fc_0
- pip=21.0.1=py38haa95532_0
- protobuf=3.17.2=py38hd77b12b_0
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.20=py_2
- pyjwt=2.1.0=py38haa95532_0
- pyopenssl=20.0.1=pyhd3eb1b0_1
- pyparsing=2.4.7=pyhd3eb1b0_0
- pyqt=5.9.2=py38ha925a31_4
- pysocks=1.7.1=py38haa95532_0
- python=3.8.11=h6244533_1
- python-dateutil=2.8.2=pyhd3eb1b0_0
- python-mss=6.1.0=pyhd3deb0d_0
- python_abi=3.8=2_cp38
- pytorch=1.9.0=py3.8_cuda10.2_cudnn7_0
- pytz=2021.1=pyhd3eb1b0_0
- pyyaml=5.4.1=py38h2bbff1b_1
- qt=5.9.7=vc14h73c81de_0
- requests=2.25.1=pyhd3eb1b0_0
- requests-oauthlib=1.3.0=py_0
- rsa=4.7.2=pyhd3eb1b0_1
- scipy=1.6.2=py38h66253e8_1
- seaborn=0.11.2=pyhd3eb1b0_0
- setuptools=52.0.0=py38haa95532_0
- sip=4.19.13=py38ha925a31_0
- six=1.16.0=pyhd3eb1b0_0
- sqlite=3.36.0=h2bbff1b_0
- tensorboard=2.5.0=py_0
- tensorboard-plugin-wit=1.6.0=py_0
- tk=8.6.10=he774522_0
- torchaudio=0.9.0=py38
- torchvision=0.10.0=py38_cu102
- tornado=6.1=py38h2bbff1b_0
- tqdm=4.62.1=pyhd3eb1b0_1
- typing-extensions=3.10.0.0=hd3eb1b0_0
- typing_extensions=3.10.0.0=pyh06a4308_0
- urllib3=1.26.6=pyhd3eb1b0_1
- vc=14.2=h21ff451_1
- vs2015_runtime=14.27.29016=h5e58377_2
- werkzeug=1.0.1=pyhd3eb1b0_0
- wheel=0.37.0=pyhd3eb1b0_0
- win_inet_pton=1.1.0=py38haa95532_0
- wincertstore=0.2=py38_0
- xz=5.2.5=h62dcd97_0
- yaml=0.2.5=he774522_0
- yarl=1.6.3=py38h2bbff1b_0
- zipp=3.5.0=pyhd3eb1b0_0
- zlib=1.2.11=h62dcd97_4
- zstd=1.4.9=h19a0ad4_0
- pip:
  - colorama==0.4.4
  - mouseinfo==0.1.3
  - opencv-python==4.5.3.56
  - polygon3==3.0.9.1
  - pyautogui==0.9.53
  - pygetwindow==0.0.9
  - pymsgbox==1.0.9
  - pyperclip==1.8.2
  - pyrect==0.1.4
  - pyscreeze==0.1.27
  - pytweening==1.0.3
  - tensorboard-data-server==0.6.1
  - thop==0.0.31-2005241907
prefix: D:\Miniconda3\envs\yolo

2.硬件环境

本项目中控制鼠标移动时使用了“易键鼠”。(也可以自行修改相关代码,使用pyautogui,pywin32等库来控制键盘鼠标)

使用方法

1.训练模型。

  • 本项目的训练方法请查看yolov5相关文档。

2.使用。

  • 启动前在utils/CFUtils.py文件中修改屏幕分辨率,检测框范围等参数。
  • 如需更换模型,请在CFdetect.py文件中修改模型位置。
  • 修改好相关参数后直接运行Main.py启动本项目。
Owner
Fabian
No Bio
Fabian
Message Passing on Cell Complexes

CW Networks This repository contains the code used for the papers Weisfeiler and Lehman Go Cellular: CW Networks (Under review) and Weisfeiler and Leh

Twitter Research 108 Jan 05, 2023
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
Second-order Attention Network for Single Image Super-resolution (CVPR-2019)

Second-order Attention Network for Single Image Super-resolution (CVPR-2019) "Second-order Attention Network for Single Image Super-resolution" is pub

516 Dec 28, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Yunyao 35 Oct 16, 2022
Anatomy of Matplotlib -- tutorial developed for the SciPy conference

Introduction This tutorial is a complete re-imagining of how one should teach users the matplotlib library. Hopefully, this tutorial may serve as insp

Matplotlib Developers 1.1k Dec 29, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
maximal update parametrization (µP)

Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer) Paper link | Blog link In Tensor Programs V: Tuning Large Neural Networks

Microsoft 694 Jan 03, 2023
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022