An 16kHz implementation of HiFi-GAN for soft-vc.

Overview

HiFi-GAN

An 16kHz implementation of HiFi-GAN for soft-vc.

Relevant links:

Example Usage

import torch
import numpy as np

# Load checkpoint
hifigan = torch.hub.load("bshall/hifigan:main", "hifigan_hubert_soft").cuda()
# Load mel-spectrogram
mel = torch.from_numpy(np.load("path/to/mel")).unsqueeze(0).cuda()
# Generate
wav, sr = hifigan.generate(mel)

Train

Step 1: Download and extract the LJ-Speech dataset

Step 2: Resample the audio to 16kHz:

usage: resample.py [-h] [--sample-rate SAMPLE_RATE] in-dir out-dir

Resample an audio dataset.

positional arguments:
  in-dir                path to the dataset directory
  out-dir               path to the output directory

optional arguments:
  -h, --help            show this help message and exit
  --sample-rate SAMPLE_RATE
                        target sample rate (default 16kHz)

Step 3: Download the dataset splits and move them into the root of the dataset directory. After steps 2 and 3 your dataset directory should look like this:

LJSpeech-1.1
│   test.txt
│   train.txt
│   validation.txt
├───mels
└───wavs

Note: the mels directory is optional. If you want to fine-tune HiFi-GAN the mels directory should contain ground-truth aligned spectrograms from an acoustic model.

Step 4: Train HiFi-GAN:

usage: train.py [-h] [--resume RESUME] [--finetune] dataset-dir checkpoint-dir

Train or finetune HiFi-GAN.

positional arguments:
  dataset-dir      path to the preprocessed data directory
  checkpoint-dir   path to the checkpoint directory

optional arguments:
  -h, --help       show this help message and exit
  --resume RESUME  path to the checkpoint to resume from
  --finetune       whether to finetune (note that a resume path must be given)

Generate

To generate using the trained HiFi-GAN models, see Example Usage or use the generate.py script:

usage: generate.py [-h] [--model-name {hifigan,hifigan-hubert-soft,hifigan-hubert-discrete}] in-dir out-dir

Generate audio for a directory of mel-spectrogams using HiFi-GAN.

positional arguments:
  in-dir                path to directory containing the mel-spectrograms
  out-dir               path to output directory

optional arguments:
  -h, --help            show this help message and exit
  --model-name {hifigan,hifigan-hubert-soft,hifigan-hubert-discrete}
                        available models

Acknowledgements

This repo is based heavily on https://github.com/jik876/hifi-gan.

You might also like...
 Fast Soft Color Segmentation
Fast Soft Color Segmentation

Fast Soft Color Segmentation

Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Comments
  • is pretrained weight of discriminator of base model available?

    is pretrained weight of discriminator of base model available?

    Thanks for nice work. @bshall

    I'm trying to train hifigan now, but it takes so long training it from scratch using other dataset.

    If discriminator of base model is also available, I could start finetuning based on that vocoder. it seems that you released only generator. Could you also release discriminator weights?

    opened by seastar105 3
  • NaN during training when using own dataset

    NaN during training when using own dataset

    While fine-tuning works as expected, doing regular training with a dataset that isn't LJSpeech would eventually cause a NaN loss at some point. The culprit appears to be the following line, which causes a division by zero if wav happens to contain perfect silence:

    https://github.com/bshall/hifigan/blob/374a4569eae5437e2c80d27790ff6fede9fc1c46/hifigan/dataset.py#L106

    I'm not sure what the best solution for this would be, as a quick fix I simply clipped the divisor so it can't reach zero:

    wav = flip * gain * wav / max([wav.abs().max(), 0.001])
    
    opened by cjay42 0
  • How to use this Vocoder with your Tacotron?

    How to use this Vocoder with your Tacotron?

    Thank you for your work. I used your Tacotron in your Universal Vocoding.The quality of the speech is excellent. However, the inference speed is slow. for that reason, I would like to use this hifigan as a vocoder. But Tacotron's n_mel is 80, while hifigan's n_mel is 128. How to use hifigan with Tacotron?

    opened by gheyret 0
Owner
Benjamin van Niekerk
PhD student at Stellenbosch University. Interested in speech and audio technology.
Benjamin van Niekerk
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
A Survey on Deep Learning Technique for Video Segmentation

A Survey on Deep Learning Technique for Video Segmentation A Survey on Deep Learning Technique for Video Segmentation Wenguan Wang, Tianfei Zhou, Fati

Tianfei Zhou 112 Dec 12, 2022
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.

EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num

1 Jul 03, 2022
Feature extraction made simple with torchextractor

torchextractor: PyTorch Intermediate Feature Extraction Introduction Too many times some model definitions get remorselessly copy-pasted just because

Antoine Broyelle 89 Oct 31, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries

VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme

Pablo Sánchez-Martín 16 Oct 10, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)

[CVPR Paper](To appear) | [Project Website](To appear) | BibTex Introduction As a popular entertainment art form, manga enriches the line drawings det

133 Dec 15, 2022
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022