Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

Overview

GDAP

Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

Environment

  • Python (verified: v3.8)
  • CUDA (verified: v11.1)
  • Packages (see requirements.txt)

Usage

Preprocessing

We follow dygiepp for data preprocessing.

  • text2et: Event Type Detection
  • ettext2tri: Trigger Extraction
  • etrttext2role: Argument Extraction
# data processed by dyieapp
data/text2target/dyiepp_ace1005_ettext2tri_subtype
├── event.schema 
├── test.json
├── train.json
└── val.json

# data processed by  data_convert.convert_text_to_target
data/text2target/dyiepp_ace1005_ettext2tri_subtype
├── event.schema
├── test.json
├── train.json
└── val.json

Useful commands:

python -m data_convert.convert_text_to_target # data/raw_data -> data/text2target
python convert_dyiepp_to_sentence.py data/raw_data/dyiepp_ace2005 # doc -> sentence, used in evaluation

Training

Relevant scripts:

  • run_seq2seq.py: Python code entry, modified from the transformers/examples/seq2seq/run_seq2seq.py
  • run_seq2seq_span.bash: Model training script logging to the log file.

Example (see the above two files for more details):

# ace05 event type detection t5-base, the metric_format use eval_trigger-F1 
bash run_seq2seq_span.bash --data=dyiepp_ace2005_text2et_subtype --model=t5-base --format=et --metric_format=eval_trigger-F1

# ace05 tri extraction t5-base
bash run_seq2seq_span.bash --data=dyiepp_ace2005_ettext2tri_subtype --model=t5-base --format=tri --metric_format=eval_trigger-F1

# ace05 argument extraction t5-base
bash run_seq2seq_span.bash --data=dyiepp_ace2005_etrttext2role_subtype --model=t5-base --format=role --metric_format=eval_role-F1

Trained models are saved in the models/ folder.

Evaluation

  • run_tri_predict.bash: trigger extraction evaluation and inference script.
  • run_arg_predict.bash: argument extraction evaluation and inference script.

Todo

We aim to expand the codebase for a wider range of tasks, including

  • Name Entity Recognition
  • Keyword Generation
  • Event Relation Identification

If you find this repo helpful...

Please give us a and cite our paper as

@misc{si2021-GDAP,
      title={Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works}, 
      author={Jinghui Si and Xutan Peng and Chen Li and Haotian Xu and Jianxin Li},
      year={2021},
      eprint={2110.04525},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

This project borrows code from Text2Event

Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

61 Jan 01, 2023
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
Bytedance Inc. 2.5k Jan 06, 2023
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems

Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement

Sumit Sinha 30 Oct 31, 2022
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Jan 04, 2023
NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
[KDD 2021, Research Track] DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks

DiffMG This repository contains the code for our KDD 2021 Research Track paper: DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neura

AutoML Research 24 Nov 29, 2022
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022