Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

Related tags

Deep Learningclin_x
Overview

CLIN-X

(CLIN-X-ES) & (CLIN-X-EN)

This repository holds the companion code for the system reported in the paper:

"CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain" by Lukas Lange, Heike Adel, Jannik Strötgen and Dietrich Klakow.

The paper wcan be found here. The code allows the users to reproduce and extend the results reported in the paper. Please cite the above paper when reporting, reproducing or extending the results.

@inproceedings{lange-etal-2021-clin-x,
      author    = {Lukas Lange and
                   Heike Adel and
                   Jannik Str{\"{o}}tgen and
                   Dietrich Klakow},
      title     = {"CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain},
      year={2021},
      url={https://arxiv.org/abs/2112.08754}
}

In case of questions, please contact the authors as listed on the paper.

Purpose of the project

This software is a research prototype, solely developed for and published as part of the publication cited above. It will neither be maintained nor monitored in any way.

The CLIN-X language models

As part of this work, two XLM-R were adapted to the clinical domain The models can be found here:

  • CLIN-X ES: Spanish clinical XLM-R (link)
  • CLIN-X EN: English clinical XLM-R (link)

The CLIN-X models are open-sourced under the CC-BY 4.0 license. See the LICENSE_models file for details.

Prepare the conda environment

The code requires some python libraries to work:

conda create -n clin-x python==3.8.5
pip install flair==0.8 transformers==4.6.1 torch==1.8.1 scikit-learn==0.23.1 scipy==1.6.3 numpy==1.20.3 nltk tqdm seaborn matplotlib

Masked-Language-Modeling training

The models were trained using the huggingface MLM script that can be found here. The script was called as follows:

python -m torch.distributed.launch --nproc_per_node 8 run_mlm.py  \
--model_name_or_path xlm-roberta-large  \
--train_file data/spanisch_clinical_train.txt  \
--validation_file data/spanisch_clinical_valid.txt  \
--do_train   --do_eval  \
--output_dir models/xlm-roberta-large-spanisch-clinical-domain/  \
--fp16  \
--per_device_train_batch_size 4 --per_device_eval_batch_size 4  \
--save_strategy steps --save_steps 10000

Using the CLIN-X model with our propose model architecture (as reported in Table 7)

The following will describe our different scripts to reproduce the results. See each of the script files for detailed information on the input arguments.

Tokenize and split the data

python tokenize_files.py --input_path path/to/input/files/ --output_path /path/to/bio_files/
python create_data_splits.py --train_files /path/to/bio_files/ --method random --output_dir /path/to/split_files/

Train the model (using random data splits)

The following command trains on model on four splits (1,2,3,4) and uses the remaining split (5) for validation. For different split combinations adjust the list of --training_files and the --dev_file arguments accordingly.

python train_our_model_architecture.py   \
--data_path /path/to/split_files/  \
--train_files random_split_1.txt,random_split_2.txt,random_split_3.txt,random_split_4.txt  \
--dev_file random_split_5.txt  \
--model xlm-roberta-large-spanish-clinical  \
--name model_name --storage_path models

Get ensemble predictions

For all models, get the predictions on the test set as following:

python get_test_predictions.py --name models/model_name --conll_path /path/to/bio_files/ --out_path predictions/model_name/

Then, combine different models into one ensemble. Arguments: Output path + List of model predictions

python create_ensemble_data.py predictions/ensemble1 predictions/model_name/ predictions/model_name_2/ ...

Using the CLIN-X model (as reported in Table 3)

While we recommand the usage of our model architecture, the CLIN-X models can be used in many other architectures. In the paper, we compare to the standard transformer sequnece labeling models as proposed by Devlin et al. For this, we provide the train_standard_model_architecture.py script

python train_standard_model_architecture.py  \
--data_path /path/to/bio_files/  \
--model xlm-roberta-large-spanish-clinical  \
--name model_name --storage_path models

License

The CLIN-X code is open-sourced under the AGPL-3.0 license. See the LICENSE file for details.

For a list of other open source components included in CLIN-X, see the file 3rd-party-licenses.txt.

Owner
Bosch Research
Bosch Research
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
Namish Khanna 40 Oct 11, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
Train an imgs.ai model on your own dataset

imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings.

Fabian Offert 5 Dec 21, 2021
✂️ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.

EyeLipCropper EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extracti

Zi-Han Liu 9 Oct 25, 2022
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
ROS support for Velodyne 3D LIDARs

Overview Velodyne1 is a collection of ROS2 packages supporting Velodyne high definition 3D LIDARs3. Warning: The master branch normally contains code

ROS device drivers 543 Dec 30, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running

Teddy Koker 15 Sep 29, 2022