The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

Related tags

Deep LearningMOTIF
Overview

MOTIF Dataset

The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled with ground truth confidence. Family labels were obtained by surveying thousands of open-source threat reports published by 14 major cybersecurity organizations between Jan. 1st, 2016 Jan. 1st, 2021. The dataset also provides a comprehensive alias mapping for each family and EMBER raw features for each file.

Further information about the MOTIF dataset is provided in our paper.

If you use the provided data or code, please make sure to cite our paper:

@misc{joyce2021motif,
      title={MOTIF: A Large Malware Reference Dataset with Ground Truth Family Labels},
      author={Robert J. Joyce and Dev Amlani and Charles Nicholas and Edward Raff},
      year={2021},
      eprint={2111.15031},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Downloading the Dataset

Due to the size of the dataset, you must use Git LFS in order to clone the repository. Installation instructions for Git LFS are linked here. On Debian-based systems, the Git LFS package can be installed using:

sudo apt-get install git-lfs

Once Git LFS is installed, you can clone this repository using:

git lfs clone https://github.com/boozallen/MOTIF.git

Dataset Contents

The main dataset is located in dataset/ and contains the following files:

motif_dataset.jsonl

Each line of motif_dataset.jsonl is a .json object with the following entries:

Name Description
md5 MD5 hash of malware sample
sha1 SHA-1 hash of malware sample
sha256 SHA-256 hash of malware sample
reported_hash Hash of malware sample provided in report
reported_family Normalized family name provided in report
aliases List of known aliases for family
label Unique id for malware family (for ML purposes)
report_source Name of organization that published report
report_date Date report was published
report_url URL of report
report_ioc_url URL to report appendix (if any)
appeared Year and month malware sample was first seen

Each .json object also contains EMBER raw features (version 2) for the file:

Name Description
histogram EMBER histogram
byteentropy EMBER byte histogram
strings EMBER strings metadata
general EMBER general file metadata
header EMBER PE header metadata
section EMBER PE section metadata
imports EMBER imports metadata
exports EMBER exports metadata
datadirectories EMBER data directories metadata

motif_families.csv

This file contains an alias mapping for each of the 454 malware families in the MOTIF dataset. It also contains a succinct description of the family and the threat group or campaign that the family is attributed to (if any).

Column Description
Aliases List of known aliases for family
Description Brief sentence describing capabilities of malware family
Attribution (If any) Name of threat actor malware/campaign is attributed to

motif_reports.csv

This file provides information gathered from our original survey of open-source threat reports. We identified 4,369 malware hashes with 595 distinct reported family names during the survey, but we were unable to obtain some of the files and we restricted the MOTIF dataset to only files in the PE file format. The reported hash, family, source, date, URL, and IOC URL of any malware samples which did not make it into the final MOTIF dataset are located here.

MOTIF.7z

The disarmed malware samples are provided in this 1.47GB encrypted .7z file, which can be unzipped using the following password:

i_assume_all_risk_opening_malware

Each file is named in the format MOTIF_MD5, with MD5 indicating the file's hash prior to when it was disarmed.

X_train.dat and y_train.dat

EMBERv2 feature vectors and labels are provided in X_train.dat and y_train.dat, respectively. Feature vectors were computed using LIEF v0.9.0. These files are named for compatibility with the EMBER read_vectorized_features() function. MOTIF is not split into a training or test set, and X_train.dat and y_train.dat contain feature vectors and labels for the entire dataset.

Benchmark Models

We provide code for training the ML models described in our paper, located in benchmarks/. To support these models, code for modified versions of MalConv2 is included in the MalConv2/ directory.

Requirements:

Packages required for training the ML models can be installed using the following commands:

pip3 install -r requirements.txt
python3 setup.py install

Training the LightGBM or outlier detection models also requires EMBER:

pip3 install git+https://github.com/elastic/ember.git

Training the models:

The LightGBM model can be trained using the following command, where /path/to/MOTIF/dataset/ indicates the path to the dataset/ directory.

python3 lgbm.py /path/to/MOTIF/dataset/

The MalConv2 model can be trained using the following command, where /path/to/MOTIF/MOTIF_defanged/ indicates the path to the unzipped folder containing the disarmed malware samples:

python3 malconv.py /path/to/MOTIF/MOTIF_defanged/ /path/to/MOTIF/dataset/motif_dataset.jsonl

The three outlier detection models can be trained using the following command:

python3 outliers.py /path/to/MOTIF/dataset/

Proper Use of Data

Use of this dataset must follow the provided terms of licensing. We intend this dataset to be used for research purposes and have taken measures to prevent abuse by attackers. All files are prevented from running using the same technique as the SOREL dataset. We refer to their statement regarding safety and abuse of the data.

The malware we’re releasing is “disarmed” so that it will not execute. This means it would take knowledge, skill, and time to reconstitute the samples and get them to actually run. That said, we recognize that there is at least some possibility that a skilled attacker could learn techniques from these samples or use samples from the dataset to assemble attack tools to use as part of their malicious activities. However, in reality, there are already many other sources attackers could leverage to gain access to malware information and samples that are easier, faster and more cost effective to use. In other words, this disarmed sample set will have much more value to researchers looking to improve and develop their independent defenses than it will have to attackers.

Owner
Booz Allen Hamilton
The official GitHub organization of Booz Allen Hamilton
Booz Allen Hamilton
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

Autonomio 1.6k Dec 15, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
🤖 Project template for your next awesome AI project. 🦾

🤖 AI Awesome Project Template 👋 Template author You may want to adjust badge links in a README.md file. 💎 Installation with pip Installation is as

Wiktor Łazarski 18 Nov 23, 2022
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
Control-Robot-Arm-using-PS4-Controller - A Robotic Arm based on Raspberry Pi and Arduino that controlled by PS4 Controller

Control-Robot-Arm-using-PS4-Controller You can see all details about this Robot

MohammadReza Sharifi 5 Jan 01, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 📂 Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022