Python bindings for BigML.io

Overview

BigML Python Bindings

BigML makes machine learning easy by taking care of the details required to add data-driven decisions and predictive power to your company. Unlike other machine learning services, BigML creates beautiful predictive models that can be easily understood and interacted with.

These BigML Python bindings allow you to interact with BigML.io, the API for BigML. You can use it to easily create, retrieve, list, update, and delete BigML resources (i.e., sources, datasets, models and, predictions). For additional information, see the full documentation for the Python bindings on Read the Docs.

This module is licensed under the Apache License, Version 2.0.

Support

Please report problems and bugs to our BigML.io issue tracker.

Discussions about the different bindings take place in the general BigML mailing list. Or join us in our Campfire chatroom.

Requirements

Only Python 3 versions are currently supported by these bindings. Support for Python 2.7.X ended in version 4.32.3.

The basic third-party dependencies are the requests, unidecode and requests-toolbelt bigml-chronos, numpy and scipy libraries. These libraries are automatically installed during the setup. Support for Google App Engine has been added as of version 3.0.0, using the urlfetch package instead of requests.

The bindings will also use simplejson if you happen to have it installed, but that is optional: we fall back to Python's built-in JSON libraries is simplejson is not found.

Also in order to use local Topic Model predictions, you will need to install pystemmer. Using the pip install command for this library can produce an error if your system lacks the correct developer tools to compile it. In Windows, the error message will include a link pointing to the needed Visual Studio version and in OSX you'll need to install the Xcode developer tools.

Installation

To install the latest stable release with pip

$ pip install bigml

You can also install the development version of the bindings directly from the Git repository

$ pip install -e git://github.com/bigmlcom/python.git#egg=bigml_python

Running the Tests

The test will be run using nose , that is installed on setup, and you'll need to set up your authentication via environment variables, as explained in the authentication section. Also some of the tests need other environment variables like BIGML_ORGANIZATION to test calls when used by Organization members and BIGML_EXTERNAL_CONN_HOST, BIGML_EXTERNAL_CONN_PORT, BIGML_EXTERNAL_CONN_DB, BIGML_EXTERNAL_CONN_USER, BIGML_EXTERNAL_CONN_PWD and BIGML_EXTERNAL_CONN_SOURCE in order to test external data connectors.

With that in place, you can run the test suite simply by issuing

$ python setup.py nosetests

Additionally, Tox can be used to automatically run the test suite in virtual environments for all supported Python versions. To install Tox:

$ pip install tox

Then run the tests from the top-level project directory:

$ tox

Importing the module

To import the module:

import bigml.api

Alternatively you can just import the BigML class:

from bigml.api import BigML

Authentication

All the requests to BigML.io must be authenticated using your username and API key and are always transmitted over HTTPS.

This module will look for your username and API key in the environment variables BIGML_USERNAME and BIGML_API_KEY respectively.

Unix and MacOS

You can add the following lines to your .bashrc or .bash_profile to set those variables automatically when you log in:

export BIGML_USERNAME=myusername
export BIGML_API_KEY=ae579e7e53fb9abd646a6ff8aa99d4afe83ac291

refer to the next chapters to know how to do that in other operating systems.

With that environment set up, connecting to BigML is a breeze:

from bigml.api import BigML
api = BigML()

Otherwise, you can initialize directly when instantiating the BigML class as follows:

api = BigML('myusername', 'ae579e7e53fb9abd646a6ff8aa99d4afe83ac291')

These credentials will allow you to manage any resource in your user environment.

In BigML a user can also work for an organization. In this case, the organization administrator should previously assign permissions for the user to access one or several particular projects in the organization. Once permissions are granted, the user can work with resources in a project according to his permission level by creating a special constructor for each project. The connection constructor in this case should include the project ID:

api = BigML('myusername', 'ae579e7e53fb9abd646a6ff8aa99d4afe83ac291',
            project='project/53739b98d994972da7001d4a')

If the project used in a connection object does not belong to an existing organization but is one of the projects under the user's account, all the resources created or updated with that connection will also be assigned to the specified project.

When the resource to be managed is a project itself, the connection needs to include the corresponding``organization ID``:

api = BigML('myusername', 'ae579e7e53fb9abd646a6ff8aa99d4afe83ac291',
            organization='organization/53739b98d994972da7025d4a')

Authentication on Windows

The credentials should be permanently stored in your system using

setx BIGML_USERNAME myusername
setx BIGML_API_KEY ae579e7e53fb9abd646a6ff8aa99d4afe83ac291

Note that setx will not change the environment variables of your actual console, so you will need to open a new one to start using them.

Authentication on Jupyter Notebook

You can set the environment variables using the %env command in your cells:

%env BIGML_USERNAME=myusername
%env BIGML_API_KEY=ae579e7e53fb9abd646a6ff8aa99d4afe83ac291

Alternative domains

The main public domain for the API service is bigml.io, but there are some alternative domains, either for Virtual Private Cloud setups or the australian subdomain (au.bigml.io). You can change the remote server domain to the VPC particular one by either setting the BIGML_DOMAIN environment variable to your VPC subdomain:

export BIGML_DOMAIN=my_VPC.bigml.io

or setting it when instantiating your connection:

api = BigML(domain="my_VPC.bigml.io")

The corresponding SSL REST calls will be directed to your private domain henceforth.

You can also set up your connection to use a particular PredictServer only for predictions. In order to do so, you'll need to specify a Domain object, where you can set up the general domain name as well as the particular prediction domain name.

from bigml.domain import Domain
from bigml.api import BigML

domain_info = Domain(prediction_domain="my_prediction_server.bigml.com",
                     prediction_protocol="http")

api = BigML(domain=domain_info)

Finally, you can combine all the options and change both the general domain server, and the prediction domain server.

from bigml.domain import Domain
from bigml.api import BigML
domain_info = Domain(domain="my_VPC.bigml.io",
                     prediction_domain="my_prediction_server.bigml.com",
                     prediction_protocol="https")

api = BigML(domain=domain_info)

Some arguments for the Domain constructor are more unsual, but they can also be used to set your special service endpoints:

  • protocol (string) Protocol for the service (when different from HTTPS)
  • verify (boolean) Sets on/off the SSL verification
  • prediction_verify (boolean) Sets on/off the SSL verification for the prediction server (when different from the general SSL verification)

Note that the previously existing dev_mode flag:

api = BigML(dev_mode=True)

that caused the connection to work with the Sandbox Development Environment has been deprecated because this environment does not longer exist. The existing resources that were previously created in this environment have been moved to a special project in the now unique Production Environment, so this flag is no longer needed to work with them.

Quick Start

Imagine that you want to use this csv file containing the Iris flower dataset to predict the species of a flower whose petal length is 2.45 and whose petal width is 1.75. A preview of the dataset is shown below. It has 4 numeric fields: sepal length, sepal width, petal length, petal width and a categorical field: species. By default, BigML considers the last field in the dataset as the objective field (i.e., the field that you want to generate predictions for).

sepal length,sepal width,petal length,petal width,species
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
...
5.8,2.7,3.9,1.2,Iris-versicolor
6.0,2.7,5.1,1.6,Iris-versicolor
5.4,3.0,4.5,1.5,Iris-versicolor
...
6.8,3.0,5.5,2.1,Iris-virginica
5.7,2.5,5.0,2.0,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica

You can easily generate a prediction following these steps:

from bigml.api import BigML

api = BigML()

source = api.create_source('./data/iris.csv')
dataset = api.create_dataset(source)
model = api.create_model(dataset)
prediction = api.create_prediction(model, \
    {"petal width": 1.75, "petal length": 2.45})

You can then print the prediction using the pprint method:

>>> api.pprint(prediction)
species for {"petal width": 1.75, "petal length": 2.45} is Iris-setosa

Certainly, any of the resources created in BigML can be configured using several arguments described in the API documentation. Any of these configuration arguments can be added to the create method as a dictionary in the last optional argument of the calls:

from bigml.api import BigML

api = BigML()

source_args = {"name": "my source",
     "source_parser": {"missing_tokens": ["NULL"]}}
source = api.create_source('./data/iris.csv', source_args)
dataset_args = {"name": "my dataset"}
dataset = api.create_dataset(source, dataset_args)
model_args = {"objective_field": "species"}
model = api.create_model(dataset, model_args)
prediction_args = {"name": "my prediction"}
prediction = api.create_prediction(model, \
    {"petal width": 1.75, "petal length": 2.45},
    prediction_args)

The iris dataset has a small number of instances, and usually will be instantly created, so the api.create_ calls will probably return the finished resources outright. As BigML's API is asynchronous, in general you will need to ensure that objects are finished before using them by using api.ok.

from bigml.api import BigML

api = BigML()

source = api.create_source('./data/iris.csv')
api.ok(source)
dataset = api.create_dataset(source)
api.ok(dataset)
model = api.create_model(dataset)
api.ok(model)
prediction = api.create_prediction(model, \
    {"petal width": 1.75, "petal length": 2.45})

Note that the prediction call is not followed by the api.ok method. Predictions are so quick to be generated that, unlike the rest of resouces, will be generated synchronously as a finished object.

The example assumes that your objective field (the one you want to predict) is the last field in the dataset. If that's not he case, you can explicitly set the name of this field in the creation call using the objective_field argument:

from bigml.api import BigML

api = BigML()

source = api.create_source('./data/iris.csv')
api.ok(source)
dataset = api.create_dataset(source)
api.ok(dataset)
model = api.create_model(dataset, {"objective_field": "species"})
api.ok(model)
prediction = api.create_prediction(model, \
    {'sepal length': 5, 'sepal width': 2.5})

You can also generate an evaluation for the model by using:

test_source = api.create_source('./data/test_iris.csv')
api.ok(test_source)
test_dataset = api.create_dataset(test_source)
api.ok(test_dataset)
evaluation = api.create_evaluation(model, test_dataset)
api.ok(evaluation)

If you set the storage argument in the api instantiation:

api = BigML(storage='./storage')

all the generated, updated or retrieved resources will be automatically saved to the chosen directory.

Alternatively, you can use the export method to explicitly download the JSON information that describes any of your resources in BigML to a particular file:

api.export('model/5acea49a08b07e14b9001068',
           filename="my_dir/my_model.json")

This example downloads the JSON for the model and stores it in the my_dir/my_model.json file.

In the case of models that can be represented in a PMML syntax, the export method can be used to produce the corresponding PMML file.

api.export('model/5acea49a08b07e14b9001068',
           filename="my_dir/my_model.pmml",
           pmml=True)

You can also retrieve the last resource with some previously given tag:

api.export_last("foo",
                resource_type="ensemble",
                filename="my_dir/my_ensemble.json")

which selects the last ensemble that has a foo tag. This mechanism can be specially useful when retrieving retrained models that have been created with a shared unique keyword as tag.

For a descriptive overview of the steps that you will usually need to follow to model your data and obtain predictions, please see the basic Workflow sketch document. You can also check other simple examples in the following documents:

Additional Information

We've just barely scratched the surface. For additional information, see the full documentation for the Python bindings on Read the Docs. Alternatively, the same documentation can be built from a local checkout of the source by installing Sphinx ($ pip install sphinx) and then running

$ cd docs
$ make html

Then launch docs/_build/html/index.html in your browser.

How to Contribute

Please follow the next steps:

  1. Fork the project on github.com.
  2. Create a new branch.
  3. Commit changes to the new branch.
  4. Send a pull request.

For details on the underlying API, see the BigML API documentation.

Owner
BigML Inc, Machine Learning made easy
BigML Inc, Machine Learning made easy
A simple Discord Mass-Ban that's still working with Member Scraper.

Mass-Ban [!] This was made for education / you can use for revenge. Please don't skid it. [!] If you want to use it, please use member scraper before

WoahThatsHot 1 Nov 20, 2021
Python Client Library to interface with the Phoenix Realtime Server

supabase-realtime-client Python Client Library to interface with the Phoenix Realtime Server This is a fork of the supabase community realtime client

Anand 2 May 24, 2022
Python library for using SMS.ir web services

smsir smsir is a Python library for using SMS web services www.sms.ir Installation Use the package manager pip to install smsir. pip install smsir Usa

mohammad reza 2 Oct 14, 2022
Telegram Bot that's allow you to play Video & Music on Telegram Group Video Chat

WAR MUSIC / VIDEO PLAYER Bot Bot Link: 🧪 Get SESSION_NAME from below: Pyrogram 🎭 Preview ✨ Features Music & Video stream support MultiChat support P

Abhishek singh 11 Dec 25, 2022
Bulk NFT uploader to OpenSea!

Bulk NFT Uploader Description Simple easy peasy python script which logins to opensea account using metamask and bulk uploads NFT to your default coll

Lakshya Khera 25 May 23, 2022
A Telelgram Bot to Extract Text from an Image

Text-Scanner-OCR A Telelgram Bot to Extract Text from an Image Configs Vars API_KEY: Your API_KEY from OCR Space GROUP: Your Group Username without '@

ALBY 8 Feb 20, 2022
A corona statistics and information telegram bot.

A corona statistics and information telegram bot.

Fayas Noushad 15 Oct 21, 2022
Microservice to extract structured information on EVM smart contracts.

Contract Serializer Microservice to extract structured information on EVM smart contract. Why? Modern NFT contracts may have different names for getPr

WeBill.io 8 Dec 19, 2022
A Discord bot to play bluffing games like Dobbins or Bobbins

Usage: pip install -r requirements.txt python3 bot.py DISCORD_BOT_TOKEN Gameplay: All commands are case-insensitive, with trailing punctuation and spa

4 May 27, 2022
GitNews: Github webhooks for Telegram

GitNews - Github webhooks for Telegram Setup: server: clone repo git clone https

Druv Jagdish 1 Feb 14, 2022
Polars-fun - Example notebooks for how to use pola.rs

polars-fun Polars is an awesome Rust DataFrame library with Python language bindings. This repo makes it easy to run Polars code on your local machine

Matthew Powers 2 Jun 28, 2022
And now, for the first time, you can send alerts via action from ArcSight ESM Console to the TheHive when Correlation Rules are triggered.

ArcSight Integration with TheHive And now, for the first time, you can send alerts via action from ArcSight ESM Console to the TheHive when Correlatio

Amir Hossein Zargaran 3 Jan 19, 2022
Fix Twitter video embeds in Discord

TwitFix very basic flask server that fixes twitter embeds in discord by using youtube-dl to grab the direct link to the MP4 file and embeds the link t

Robin Universe 682 Dec 28, 2022
Declarative assertions for AWS

AWSsert AWSsert is a Python library providing declarative assertions about AWS resources to your tests. Installation Use the package manager pip to in

19 Jan 04, 2022
Powerful Telegram bot to countdown to your important events in any group chat.

Powerful Telegram bot to countdown to your important events in any group chat. Live countdown timer.

118 Dec 30, 2022
Fully asynchronous trace.moe API wrapper

AioMoe Fully asynchronous trace.moe API wrapper Installation You can install the stable version from PyPI: $ pip install aiomoe Or get it from github

2 Jun 26, 2022
Coinbase Pro API interface framework and tooling

neutrino This project has just begun. Rudimentary API documentation Installation Prerequisites: Python 3.8+ and Git 2.33+ Navigate into a directory of

Joshua Chen 1 Dec 26, 2021
Music bot for playing music on telegram voice chat group.

Somali X Music 🎵 Music bot for playing music on telegram voice chat group. Requirements FFmpeg NodeJS nodesource.com Python 3.8+ or Higher PyTgCalls

Abdisamad Omar Mohamed 4 Dec 01, 2021
Sail is a free CLI tool to deploy, manage and scale WordPress applications in the DigitalOcean cloud.

Deploy WordPress to DigitalOcean with Sail Sail is a free CLI tool to deploy, manage and scale WordPress applications in the DigitalOcean cloud. Conte

Konstantin Kovshenin 159 Dec 12, 2022
A cross-platform script to book first available time for getting a passport in Sweden - Ett skript som automatiskt bokar pass hos polisen

Automatic passport booker - Boka pass automatiskt hos Svenska polisen A cross-platform script to book first available time for getting a passport in S

Elias Floreteng 14 Oct 17, 2022